Hot Topics in Medical Dermatology
Dangerous Dermatoses: TEN, SJS, EM, BP, & PV Pearls

Jonathan Ungar, MD, FAAD
Assistant Professor, Kimberly and Eric J. Waldman
Department of Dermatology
Icahn School of Medicine at Mount Sinai, New York, NY
DISCLOSURE OF RELATIONSHIPS WITH INDUSTRY

Jonathan Ungar, MD

S010 - Hot Topics in Medical Dermatology
Dangerous Dermatoses: TEN, SJS, EM, BP, & PV Pearls

DISCLOSURES

Janssen Pharmaceuticals, Inc – Advisory board - honorarium
Menlo Therapeutics – Advisory board – honorarium
UCB – Advisory board – honorarium
• I will discuss off-label uses of medications

• I will discuss treatments currently undergoing trials for FDA approval
SJS/TEN

SJS/TEN

History

- Stevens-Johnson Syndrome
 - First described in 1922
 - A.M. Stevens and F.C. Johnson
 - Two children with eruptive fever, stomatitis, and ophthalmia

- Toxic Epidermal Necrolysis
 - First coined in 1956
 - A. Lyell
 - Four patients presenting with “a toxic eruption which closely resembles scalding in its clinical appearance and in the sensations to which it gives rise in the patient”

SJS/TEN

• Severe cutaneous adverse drug reaction
 • Case series vary on most common causative agents

• Most common classes of implicated drugs
 • Anticonvulsants
 • Antibiotics

• Allopurinol

• High mortality: 25-35%
SJS/TEN

Mortality

• **SCORTEN**
 - Introduced in 2000 by Batsuji-Garin, et al
 - Seven mortality risk factors
 - Combined score to predict mortality risk

Table II. Independent prognosis factors of TEN.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (≥ 40 y old)</td>
<td>2.7 (1.0–7.5)</td>
<td>0.05</td>
</tr>
<tr>
<td>Heart rate (≥ 120 per min)</td>
<td>2.7 (1.0–7.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>Cancer/haematologic malignancy</td>
<td>4.4 (1.1–18.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>BSA involved at day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10–30%</td>
<td>2.9 (0.9–8.8)</td>
<td>0.04</td>
</tr>
<tr>
<td>> 30%</td>
<td>3.3 (1.2–9.6)</td>
<td></td>
</tr>
<tr>
<td>Serum urea level (> 10 mmol per liter)</td>
<td>2.5 (0.9–7.3)</td>
<td>0.09</td>
</tr>
<tr>
<td>Serum bicarbonate level (< 20 mmol per liter)</td>
<td>4.3 (1.1–16.0)</td>
<td>0.03</td>
</tr>
<tr>
<td>Serum glucose level (> 14 mmol per liter)</td>
<td>5.3 (1.5–18.2)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SCORTEN</td>
<td>2.45 (2.26–5.25)</td>
<td>< 10⁻⁴</td>
</tr>
</tbody>
</table>

SJS/TEN

Pathophysiology (proposed and simplified)

Drug or drug-peptide complexes recognized by MHC I receptors on T-cells

Activation and clonal expansion of CD8+ and NK cells in skin

Release of inflammatory cytokines and apoptotic mediators (granulysin*, granzyme b, perforin, FasL, etc)

Keratinocyte apoptosis

*likely “key mediator” of keratinocyte death; highly expressed in blister fluid; can induce SJS/TEN phenotype when injected into murine skin

SJS/TEN

Treatment Options

- **Non-Pharmacologic**
 - *Stop offending medication !!!*
 - **Supportive care**
 - Wound care
 - Fluid electrolyte balance / nutrition
 - Infection control / prevention
 - Ophthalmology / GYN / Urology
 - Pain control
 - Airway management

 - Transfer to appropriate center
 - Burn Unit, if possible

- **Pharmacologic**
 - Glucocorticosteroids
 - IVIg
 - Cyclosporine
 - TNF-inhibitors
 - Thalidomide
SJS/TEN

Treatment Options

• **Non-Pharmacologic**
 • Stop offending medication !!!

• **Supportive care**
 • Wound care
 • Fluid electrolyte balance / nutrition
 • Infection control/prevention
 • Ophthalmology / GYN / Urology
 • Pain control
 • Airway management

• Transfer to appropriate center
 • Burn Unit, if possible

All the studies and data agree that these are most important.
SJS/TEN

Treatment Options

• Non-Pharmacologic
 • Stop offending medication !!!
 • Supportive care
 • Wound care
 • Fluid electrolyte balance / nutrition
 • Infection control/prevention
 • Ophthalmology / GYN / Urology
 • Pain control

• Transfer to appropriate center
 • Burn Unit, if possible

Can we do anything to decrease mortality beyond these...?
SJS/TEN

Treatment Options

• **Pharmacologic**
 • Glucocorticosteroids
 • IVIg
 • Cyclosporine
 • TNF-inhibitors
 • Thalidomide
SJS/TEN

Treatment Options

• **Pharmacologic**
 • Glucocorticosteroids
 • IVIg
 • Cyclosporine
 • TNF-inhibitors
 • Thalidomide

Systemic Immunomodulating Therapies for Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Systematic Review and Meta-analysis

• **Supportive Care**
 • **Most important**
 • Glucocorticosteroids
 • Inconclusive
 • IVIg
 • Does not support use
 • Cyclosporine
 • Beneficial effect on mortality
SJS/TEN

Treatment Options

- **Pharmacologic**
 - Glucocorticosteroids
 - IVIg
 - Cyclosporine
 - TNF-inhibitors
 - Thalidomide

 Supportive Care
 - Most important
 - Glucocorticosteroids
 - No benefit over Supportive Care
 - IVIg
 - No benefit over Supportive Care
 - Cyclosporine
 - Probable beneficial effect on mortality
 - TNF inhibitors
 - Confer survival benefit
 - Thalidomide
 - Clinical trial showed increased mortality

Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Concise Review with a Comprehensive Summary of Therapeutic Interventions Emphasizing Supportive Measures

SJS/TEN

Treatment Options

• **Pharmacologic**
 - Cyclosporine
 - TNF-inhibitors
 - Glucocorticosteroids
 - IVIg
 - Thalidomide
SJS/TEN

Treatment Options

• **Pharmacologic**
 • Cyclosporine
 • TNF-inhibitors
 • Glucocorticosteroids
 • IVIg
 • Thalidomide
SJS/TEN

Treatment Options

- **Glucocorticosteroids**
 - Traditional mainstay therapy
 - EuroSCAR (2008) analysis shows no significant mortality benefit vs supportive care alone
 - case-controlled (n=379 included)
 - 6 countries (80% from France and Germany)
 - OR = 0.4 (95%CI 0.1-1.7) in France
 - OR = 0.3 (95%CI 0.1-1.1) in Germany

SJS/TEN

Treatment Options

- **IVIg**

 - Search for alternative to GCS led to IVIg (concern for increased mortality with GCS)\(^1\)

 - **Rationale:** Fas-FasL interaction – reversal of FasL-mediated keratinocyte apoptosis demonstrated with IVIg (Viand *et al.*, 1998)\(^1\)

SJS/TEN

Treatment Options

• **IVIg**

 • EuroSCAR (2008) analysis shows **no significant mortality benefit** vs supportive care alone
 • case-controlled (n=379 included)
 • 6 countries (80% from France and Germany)

 • OR = 1.4 (95%CI 0.6-4.3) in France
 • OR = 1.5 (95%CI 0.5-4.4) in Germany

SJS/TEN

Treatment Options

• IVIg

The efficacy of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: a systematic review and meta-analysis.

• Meta-analysis, 17 studies with at least 8 patients
 • IVIg showed no conclusive mortality benefit vs supportive care alone
 • Adults – High-dose (>2g/kg): OR=0.63 (95%CI 0.27-46.0, p=0.27)
 • Pooled Multivariate: OR=1.00 (95%CI 0.58-1.75, p=0.99)
 • High-dose IVIg (>2g/kg) vs low-dose IVIg (<2g/kg)
 • OR=0.494 (95%CI 0.106-2.300, p=0.369)
SJS/TEN

Treatment Options

- Pharmacologic
 - Cyclosporine
 - TNF-inhibitors
 - Glucocorticosteroids
 - IVIg
 - Thalidomide
SJS/TEN

Treatment Options

- **Cyclosporine**

 - **Rationale:**
 - Cytotoxic T-cells and NK cells implicated in keratinocytes apoptosis (like GVHD)
 - Cyclosporine interferes with T-cell signaling and function

SJS/TEN

Treatment Options

• **Cyclosporine**

 • Multiple case reports in the literature with positive results

A meta-analysis of cyclosporine treatment for Stevens-Johnson syndrome/toxic epidermal necrolysis.

Ng QX. *J Inflamm Res*. 2018 Mar 28;11:135-142

 • Examined 12 studies, n=357
 • Overall, showed mortality benefit vs supportive care alone
 • OR = 0.320 (95%CI 0.119-0.522, p=0.002)

 • Generally well-tolerated despite critically-ill patients
SJS/TEN

Treatment Options

• **Pharmacologic**

 • Cyclosporine
 • TNF-inhibitors
 • Glucocorticosteroids
 • IVIg
 • Thalidomide
SJS/TEN

Treatment Options

• **Etanercept**

 • **Rationale:**
 • High levels of TNF-α in blister fluid
 • Released by activated keratinocytes and macrophages
 • Potential mediator of keratinocyte apoptosis

SJS/TEN

Treatment Options

• **Etanercept**

Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions.

- Prospective, randomized (n=96)
 - Etanercept - 25mg SQ BIW (50mg if >65kg)
 - Corticosteroids – 1-1.5mg/kg/d prednisolone

- Etanercept **decreased SCORTEN-predicted mortality**: 8.3% vs 17.7%
- **Reduced time-to-skin-healing** in mod-to-sev compared to GCS: 14d vs 19d
SJS/TEN

So what should I do.........?

- **ALWAYS:**
 - Identify and **stop offending medication**
 - Appropriate **supportive care** (consider transfer to appropriate unit)

- **Consider:**
 - **Cyclosporine** and **etanercept** emerging as preferred treatments
 - Always consider contraindications
 - Cyclosporine: 3-5mg/kg/d split BID* (?taper after re-epithelialization)
 - Etanercept: 50mg SQ once*
 - **IVIg** if other options are contraindicated
 - IVIg 1-2g/kg split over 2-5 days

*No consensus on appropriate dosing
Bullous Pemphigoid
Bullous Pemphigoid

History
- Term first used by Lever in 1953
 - Bullous disease with subepidermal detachment
 - To distinguish from pemphigus
- Autoantibodies identified by Jordan and Beutner using DIF and IIF

Epidemiology
- Most common bullous disorder
 - Europe: 2.5-42.8 cases/million/year
 - Asia: 2.6-7.5 cases/million/year
- Mortality: ~23.5% (1-year mortality)

Bullous Pemphigoid

Treatment Landscape

• **First Line**
 - High potency topical steroids
 - Systemic steroids

• **Second line**
 - Doxycycline +/- niacinamide
 - Dapsone
 - Methotrexate
 - Azathioprine
 - Mycophenolate mofetil
 - IVIg
 - Rituximab
 - Omalizumab
Bullous Pemphigoid

• **Dosing**
 - Systemic steroids -
 • 0.5-1mg/kg/d
 - Doxycycline +/- niacinamide
 • 100mg BID + 750mg BID
 - Dapsone
 • 100mg PO QD
 - Methotrexate
 • 15mg PO qWeek
 - Azathioprine
 • 0.5-2mg/kg PO QD
 - Mycophenolate mofetil
 • Up to 3g QD (split q12h)
 - IVIg
 • 2g/kg split over 5 days
 - Rituximab
 • 1g x 2 (two weeks apart)
 • 375mg/m² (4 weekly doses)
 - Omalizumab
 • 300mg SQ every 2-4 weeks
Bullous Pemphigoid

Doxycycline vs Systemic Steroids

Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial.

- Multicenter, randomized trial
 - Arm 1: Doxycycline 200mg daily spilt into 2 doses (TCS for weeks 1-3)
 - Arm 2: Prednisolone 0.5 mg/kg daily (TCS for weeks 1-3)

- Doxycycline arm showed 74% of patients had fewer than 3 blisters at Wk 6
- Prednisolone arm showed 91% of patients had fewer than 3 blisters at Wk 6

- Results favor use of systemic steroids vs doxycycline
Bullous Pemphigoid

Rituximab (!!!)

First-line combination therapy with rituximab and corticosteroids provides a high complete remission rate in moderate-to-severe bullous pemphigoid.

- Rituximab – 500mg x 4 weekly doses + prednisolone 0.5 mg/kg/d (tapered rapidly after disease control)
 - n=13
- Control: prednisolone 0.5mg/kg/d
 - n=19

- 92% vs 53% of rituximab group achieved complete remission (p=0.02)

- **Should rituximab be first line for patients with severe disease?**
Bullous Pemphigoid

Don’t Forget Drugs

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Examples</th>
<th>Study design</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipeptidyl peptidase-IV (DPP-IV) inhibitors</td>
<td>Vildagliptin</td>
<td>Systematic review and meta-analysis including 3563 BP patients using DPP-IV inhibitors(^5)</td>
<td>Pooled 10.16</td>
</tr>
<tr>
<td></td>
<td>Linagliptin</td>
<td></td>
<td>Pooled 6.13</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Furosemide</td>
<td>British case-control study including 86 patients with BP and 134 age and sex-matched controls(^5)</td>
<td>Adjusted 3.8</td>
</tr>
<tr>
<td></td>
<td>Spironolactone</td>
<td>French case-control study with 201 BP patients and 345 controls matched according to age, sex, place of residence and hospital(^5)</td>
<td>Adjusted 2.3</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>Phenothiazine aliphatic chain</td>
<td></td>
<td>Adjusted 3.7</td>
</tr>
<tr>
<td>Checkpoint inhibitors Anti-PD-1/PD-L1</td>
<td>Pembrolizumab, Nivolumab, Durvalumab</td>
<td>Review study including 21 case reports of BP induced by checkpoint inhibitors(^5)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Bullous Pemphigoid

Relationship to Malignancy

• Meta-analysis of 8 studies showed no association between BP and overall cancer\(^1\)
 • One cohort – association with lymphoid leukemia, kidney ca, laryngeal ca
 • Overall pooled of case-controlled showed no association

• Japanese study with 1,113 BP patients\(^2\)
 • 5.8% malignancies
 • Lymphomas, gastric, colorectal, lung, prostate, and uterine cancers
 • Higher than the expected for age-matched controls

Bullous Pemphigoid

Upcoming Potential Therapies

• Bertilimumab
 • Human, monoclonal antibody targeting Eotaxin-1
 • Granted fast-track status in 9/2018¹
 • Phase 2 complete¹ (ClinicalTrials.gov Identifier: NCT02226146)
 • Safe and efficacious
 • Decline in BPDAI of 81% (p=0.015) at day 84

• BIVV009 (formerly TNT009)
 • Humanized, monoclonal antibody targeting complement component 1s
 • Phase 1 trial recruiting (ClinicalTrials.gov Identifier: NCT02502903)

Pemphigus
Pemphigus

Epidemiology

- Rare disease classification by NIH
 - <200,000 cases in US

- ~ 0.76-5 new cases/1mm/year in US\(^1\)
- Ashkenazi Jews: up to 32/1mm/year\(^1\)

- Mortality rate: 5-25\(^2\)

- HLA-DR4 haplotype DRB1*0402 and HLA-DQB1*0503\(^3\)

Pemphigus

Pathophysiology

• Autoantibodies against desmosome cadherins (Dsg 1 and Dsg 3)

Image source: Stevens NE. Front Immunol. May 2019
Pemphigus

Treatment Landscape

• **Immunosuppression**
 • Corticosteroids
 • Mycophenolate mofetil
 • Orphan Drug Status (2006)
 • Azathioprine
 • Dapsone

• **Biologics**
 • Rituximab

• **Other**
 • Plasmapheresis
 • IVIg +/- cyclophosphamide
Pemphigus

Rituximab

- Approved for PV by FDA 6/2018
- Human chimeric anti-CD20 monoclonal antibody
- First reported use in 2002

Mechanism
- Depletes CD20+ via complement-mediated cytotoxic cell death

FIGURE 1 | Dual mechanisms of B cell depletion: 1: elimination of autoreactive B cells; 2: induction of regulatory B cells.

Image adapted from: Musette P. Front Immunol. Apr 2018
Pemphigus

Rituximab

First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial

• Study Design
 • Prospective, multicenter, parallel-group, open-label, randomized
 • Treatment naïve
 • Arms:
 • Prednisone alone: (n=44) 1-1.5mg/kg (12-28 month taper)
 • Rituximab + prednisone: (n=46) rituximab 1g x 2 doses (2 weeks apart) + pred 0.5-1mg/kg (3-6 month taper)
Pemphigus

Rituximab

First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial

- **Results**
 - At 24 months:
 - Rxn + pred: 41/46 (89%) complete remission off therapy
 - Prednisone alone: 15/44 (34%) complete remission off therapy
 - **AE**: Worse in prednisone only group (corticosteroid-related)

- **Take Away**: Rituximab with short prednisone taper MORE EFFECTIVE than prednisone alone
Pemphigus

Rituximab: Dosing

- **High Dose**
 - Lymphoma Protocol
 - 375mg/m2 → 4 doses → 1 week apart
 - RA Protocol
 - 1g → 2 doses → 14 days apart
 - Initial clinical response comparable
 - RA has higher relapse rate (65% vs 41%) in 16-17 mo

- **Low Dose**
 - RA Protocol
 - 500mg → 2 doses → 14 days apart
 - Comparable clinical response to high dose with lower AE

Pemphigus

Rituximab: Time to initial treatment

An assessment of treatment history and its association with clinical outcomes and relapse in 155 pemphigus patients with response to a single cycle of rituximab.

- Retrospective
- Single cycle of rituximab

Failure to achieve remission correlated to longer time of disease activity prior to receiving treatment
Pemphigus

Rituximab + Azathioprine

Maintenance therapy with azathioprine prolonged duration of remission for pemphigus patients who received rituximab as first-line or add-on therapy.

- Retrospective (2008-2015)
- 78 patients with at least 1yr follow up s/p rituximab

- 71/78 (91%) achieved complete remission after 1 cycle of rituximab
- Repeated cycles of rituximab after relapse trended towards shorter times to complete remission
- Remission duration longer in patients put on AZA (1-2mg/kg/d) therapy after rituximab
 - 21.98 +/- 16.24 vs 9.98 +/- 7.93 months (*p=0.0232*)
Pemphigus

Rituximab is great, but what else is there.....?
Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline – anti-CD20

• Type I
 • Rituximab, ofatumumab, veltuzumab, ocrelizumab (approved for MS)
 • B cell depletion via complement-dependent cytotoxicity1

• Type II
 • Obinutuzumab, tositumomab
 • B cell depletion via signaling-dependent cell death (little complement dependent)1
 • May be more efficient at depleting organ resident B cells2

Pemphigus

Treatment Pipeline – anti-CD20

• Type I – Ofatumumab
 • Fully human, high affinity for CD20
 • Safe and effective in other autoimmune disorders
 • 40mg SQ at week 0 and week 4, then 20mg SQ every 4 weeks through week 56
 • Phase III trial terminated (drug acquired by new company, not safety)
 • ClinicalTrials.gov Identifier: NCT01920477

• Type I – Veltuzumab
 • Humanized; greater binding affinity and CDC compared to rituximab
 • Two 320mg SQ injections at week 0 and week 2
 • One patient – 22mo CR, subsequent cycle yielded 9mo CR

Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline – Vaccination

- PI-0824
 - Synthetic Dsg3 peptide
 - AA residues 186-204

 - The idea: binding receptors without costimulatory signals leads to selective suppression of anti-Dsg3 autoantibodies

- Phase I/II Studies
 - No SAE
 - 2/17 pts experienced disease flare 1-5 months post-treatment

- No further studies at this time

- ClinicalTrials.gov Identifier: NCT00063752

Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline – anti-BAFF

- BAFF = B-cell Activating Factor
 - TNF superfamily cytokine
 - Plays role in B-cell differentiation
 - Binding to receptor (BAFF-R) prevents apoptosis

- The idea: inhibition of BAFF/BAFF-R interaction will lead to apoptosis of autoantibody producing B-cells

- BAFF activity correlated in RA and SLE
 - NOT in PV

Pemphigus

Treatment Pipeline – anti-BAFF

• Belimumab
 • Human monoclonal antibody targeting BAFF
 • approved for SLE
 • not effective in RA

• VAY736
 • defucosylated, human IgG1 monoclonal antibody targeting BAFF-R
 • enhanced antibody-dependent cellular cytotoxicity-mediated depletion of B cells
 • blockade of BAFF

• Phase II trial is actively recruiting

• ClinicalTrials.gov Identifier: NCT01930175

Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline – BTK Inhibition

• Bruton’s Tyrosine Kinase
 • Intracellular, essential enzyme for B-cell development and maturation
 • Inhibition could:
 • Block autoantibody production via B-cell receptor-mediated pathway
 • Dampen inflammation by inhibiting B-cell activation and FcR-induced cytokine release

Pemphigus

Treatment Pipeline – BTK Inhibition

• Ibrutinib
 • Small molecule that irreversibly binds BTK
 • Approved for:
 • Previously treated chronic GVHD
 • Previously treated mantle cell lymphoma
 • Waldenstrom’s Magrooglobulinemia
 • Previously treated marginal zone lymphoma

Pemphigus

Treatment Pipeline – BTK Inhibition

• PRN1008
 • Oral, small molecule, reversible BTK inhibitor
 • Granted orphan status in 2017

• Phase 1¹
 • No SAE
 • Main AE were GI-related; no discontinuations

• Phase 2²
 • Data pending, but press release from the company (11/2018):
 • Achieved primary endpoint (>50% attained disease control within 4 weeks)
 • Achieved secondary endpoint (sustained clinical efficacy at 12 weeks of therapy)

• Phase 3 – PEGASUS study
 • Currently recruiting
 • ClinicalTrials.gov Identifier: NCT03762265

Pemphigus

Treatment Pipeline

• Anti-CD20
• Vaccination
• Anti-BAFF
• BTK Inhibition
• Neonatal FcR Antagonism
• CAAR
Pemphigus

Treatment Pipeline – neonatal FcR antagonism

- Neonatal FcR
 - Receptor found predominantly on endothelial cells
 - Extends half-life of IgG by decreasing lysosomal degradation (inc. IgG recycling)

Pemphigus

Treatment Pipeline – neonatal FcR antagonism

- SYNT001
 - Humanized, monoclonal IgG4
 - Blocks interaction of FcRn and Fc portion of IgG4
 - Increased autoantibody lysosomal degradation
 - Granted orphan status 9/2018

- Phase 1b/2
 - Ongoing
 - Rapid lowering of circulating IgG
 - Well-tolerated
 - 5/7 pts showed reduction of disease activity at day 42

- ClinicalTrials.gov Identifier: NCT03075904

Pemphigus

Treatment Pipeline

- Anti-CD20
- Vaccination
- Anti-BAFF
- BTK Inhibition
- Neonatal FcR Antagonism
- CAAR
Pemphigus

Treatment Pipeline – CAAR

- **Chimeric Autoantibody Receptor T-cells**
 - CAR (Chimeric Antibody Receptor T-cells)
 - Shown to be effective in B-cell leukemia
 - Antibody structure fused to CD3 signaling domain on T-cells engineered to recognize tumor-associated antigens
 - Proliferate and expand *in vivo*

Pemphigus

Treatment Pipeline – CAAR

- **Chimeric Autoantibody Receptor T-cells**
 - CAR (Chimeric Antibody Receptor T-cells)
 - Shown to be effective in B-cell leukemia
 - Antibody structure fused to CD3 signaling domain on T-cells engineered to recognize tumor-associated antigens
 - Proliferate and expand *in vivo*

- CAAR
 - Truncated fragments of Dsg3 extracellular domain fused to CD137/CD3 signaling domains
 - Recognized autoantibodies to Dsg3 fixed on B-cell membrane
 - Efficacy in murine models and *in vitro*

Pemphigus

Treatment Pipeline – CAAR

FIGURE 2 | Chimeric auto antibody receptor (CAAR) T cell.

image from: Musette P. Front Immunol. Apr 2018
Thank you for your attention!

jonathan.ungar@mountsinai.org