Autoinflammatory Diseases
For the Dermatologist

George Han, MD, PhD
Chairman, Department of Dermatology
Mount Sinai Beth Israel
Assistant Professor and Director of Teledermatology
Icahn School of Medicine at Mount Sinai

Disclosure

• I have no relevant conflicts of interest with regards to the topic of this talk

Objective

• Describe mechanisms for autoinflammation
• Identify and manage cutaneous and systemic manifestations of autoinflammatory conditions
• Treat autoinflammatory syndromes with an understanding of the role therapeutic agents play in targeting the innate immune system

Outline

• What is autoinflammation?
• Classical/Monogenic Autoinflammatory Diseases
• Common Dermatologic Conditions featuring Autoinflammation
• Case Discussions
Outline

- What is autoinflammation?
- Classical/Monogenic Autoinflammatory Diseases
- Common Dermatologic Conditions featuring Autoinflammation
- Case Discussions

What is autoinflammation?

- Autoinflammatory syndromes are conditions characterized by:
 - Exaggerated innate immune system response
 - Episodes of spontaneous inflammation affecting multiple organ systems
 - Primarily neutrophil-mediated response
 - Usually involving IL-1 pathways

Autoinflammation vs Autoimmunity

<table>
<thead>
<tr>
<th>Autoinflammation</th>
<th>Autoimmunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innate immune system</td>
<td>Adaptive immune system</td>
</tr>
<tr>
<td>Neutrophil-mediated</td>
<td>Lymphocyte-mediated</td>
</tr>
<tr>
<td>No detectable autoantibodies</td>
<td>Characteristic autoantibodies in serum</td>
</tr>
<tr>
<td>Linked to inflammasome activation</td>
<td>Less clear link to inflammasomes</td>
</tr>
<tr>
<td>Classically IL-1 mediated</td>
<td>Mediated by T- and B- cells, with variable interleukin activation (including IL-1)</td>
</tr>
<tr>
<td>Host vs. Danger signals</td>
<td>Self vs. Non-self</td>
</tr>
</tbody>
</table>

IL-1β and IL-18

- Both activated by inflammasome activation, central to autoinflammation
- Both released as precursors and require activation
IL-1β

- IL-1β – discovery first started in 1948
 - Substance from rabbit leukocytes able to cause fever, later identified in 1970’s as IL-1
 - Secreted by immune cells
 - Monocytes/macrophages, dendritic cells, neutrophils, NK cells, lymphocytes
 - Also secreted by keratinocytes
- Acute phase reactant and pyrogen
- Upregulates secretion of COX-2, IL-6, TNF-α, and IL-1
 - Activation of NFκB and subsequent expression of COX-2 leads to fever
- Multiple types of receptors, including soluble receptors

Medications Targeting IL-1β

- Anakinra - competitive inhibitor of IL-1; binds to IL-1R
 - Short half-life necessitates daily SQ injections
 - FDA approved for RA, CAPS
- Rilonacept - fusion protein of IL-1R which binds IL-1 (soluble decoy),
 - Stronger binding to IL-1β than IL-1α; FDA approved for CAPS
 - Weekly injections
- Canakinumab - anti-IL-1β monoclonal antibody
 - Half life of ~25 days allows for injection q2mo
 - FDA approved for CAPS, systemic JIA, TRAPS, FMF
- Gevokizumab (anti-IL-1β mAb), LV2189102 were in development but not progressing
- P2D7KK - similar to Canakinumab but 11x more potent; still in preclinical trials

IL-18

- Induces interferon-γ
 - Requires IL-12 or IL-15 also
- Not a strong pyrogen (less activation of NFκB)
- Possible role in inflammation of IBD, heart disease, metabolic syndrome
- Blocking IL-18 reduces metastasis in a mouse model of melanoma

Inflammasomes
Inflammasomes

• Regulates immunologic response to either exogenous stimuli (pathogens) or endogenous stimuli (neoplasia)
• Intracellular multi-protein complexes
 – Molecular pattern recognition receptor (PRR)
 – Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) adaptor protein
 – Caspase-1 enzyme

Autoinflammation as Aberrant Host Defense

• Pathogen-associated molecular patterns (PAMPs) activate inflammasomes
• Prototype of PAMP is Lipopolysaccharide, an endotoxin found on gram-negative bacterial cell walls
• Also flagellin, lipoteichoic acid (Gram+), peptidoglycan, dsRNA (viruses)
• Necessary for innate immune response to microbial invaders

Autoinflammation as Aberrant Host Defense

• Danger-associated molecular patterns (DAMPs) part of host response to non-pathogenic danger signals
• During cell death, some nuclear/cytosolic proteins are broken down → activate inflammasome to clear away cellular debris or react to possible neoplasia
• Examples include DNA/RNA, Heat Shock Protein, ATP, adenosine, S100
• Complicated relationship with tumorigenesis

Outline

• What is autoinflammation?
 • Classical/Monogenic Autoinflammatory Diseases
 • Common Dermatologic Conditions featuring Autoinflammation
 • Case Discussions
Categories of Autoinflammatory Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Mutation</th>
<th>Clinical</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial Mediterranean Fever (FMF)</td>
<td>MEFV (AR)</td>
<td>Erysipelas-like lesions on lower extremities, vasculitis</td>
<td>Colchicine, Anakinra, TNF inhibitors</td>
</tr>
<tr>
<td>Cryopyrin-Associated Periodic Syndromes (CAPS)</td>
<td>CIAS/NLRP3 (AD)</td>
<td>Urticarial lesions</td>
<td>Anakinra, Rilonacept, Canakinumab, Thalidomide</td>
</tr>
<tr>
<td>Hyper- IgD Syndrome (HIDS)</td>
<td>MVK (AR)</td>
<td>Urticarial lesions</td>
<td>Prednisone, Colchicine, IVIG, Cys, Anakinra, TNF inhibitors</td>
</tr>
<tr>
<td>TNF Receptor Associated Periodic Syndrome (TRAPS)</td>
<td>TNFRSF1A (AD, sporadic)</td>
<td>Erythematous patches/ plaques, sometimes figurate</td>
<td>TNF inhibitors, prednisone, anakinra</td>
</tr>
<tr>
<td>Juvenile Autoinflammatory Diseases</td>
<td>Various</td>
<td>Various, including severe acne, HS, PG, pustular psoriasis</td>
<td>Various</td>
</tr>
</tbody>
</table>

Familial Mediterranean Fever

- Most common systemic autoinflammatory disease
 - Primarily affects patients with Jewish, Arab, Armenian, Turkish, and Italian lineage
 - AR; Carrier frequency in Middle Eastern populations as high as 1:3
 - Almost all have at least one episode by age 20
 - Fever 6 hours – 3 days, erysipelas-like lesions of lower extremities, monoarthritis, abdominal pain, pleurisy

Familial Mediterranean Fever

- Mutation in MEFV which encodes for pyrin
- Distinguishing clinical finding is erysipelas-like lesions of lower extremities in up to half of patients
 - Warm, erythematous, edematous, well-demarcated
 - Below knee, dorsal foot, anterior leg
 - Symmetric or unilateral
 - Generally less than 15cm in size
- Histology shows dermal infiltrate of neutrophils and nuclear dust
- Higher likelihood of vasculitis such as HSP (5%), PAN

Familial Mediterranean Fever

- Systemic manifestations common and may vary between episodes
 - Most common – abdominal pain (95%)
 - Monoarthritis (75%) with effusions – knee, ankle, hips
 - Pleuritic chest pain (30%)
 - Scrotal pain/swelling in boys
 - Amyloidosis in untreated
Familial Mediterranean Fever

- Treatment of choice – colchicine
- Reduces frequency/severity of attacks
- Remission in up to ¾
 – Prevents development of amyloidosis
- Reports of anakinra and TNF inhibitors also helping
 – RCT in 2016 from Israel – anakinra reduced frequency of attacks, especially helpful in joints

Cryopyrin Associated Periodic Syndromes

- Encompasses a spectrum of severity and diseases previously classified separately
- Collectively referred to as CAPS or cryopyrinopathies
 – Familial Cold-Associated Syndrome (FCAS)
 – Muckle-Wells Syndrome (MWS)
 – Neonatal-onset multisystem inflammatory disease (NOMID)/Chronic infantile neurologic cutaneous articular syndrome (CINCA)

Cryopyrin Associated Periodic Syndromes

- FCAS and MWS found in 2001 to share the same mutation – susceptibility gene is CIAS1 which encodes for cryopyrin
 – Later found to also underlie NOMID/CINCA
 – Mutations mostly localized to exon 3
 – Some mutations can lead to different manifestations and severity

Cryopyrin Associated Periodic Syndromes

- NOMID/CINCA – earlier onset, most severe end of the spectrum
 – Triad of disabling arthropathy, skin eruption, CNS inflammation
 – 2/3 with urticaria-like eruptions at birth, most of the rest have it by 6 months
 - Biopsy showing dermal infiltrate of neutrophils, lymphocytes, occasional eosinophils but no mast cells as in true urticaria
 – Neurologic manifestations and arthropathy common and variable; also conjunctivitis and hearing loss
 – Treatment of choice is now anakinra (steroids, Cys much less effective)
Cryopyrin Associated Periodic Syndromes

- FCAS (aka familial cold urticaria) least severe – cold-induced bouts of fever, urticaria, and arthralgia
- MWS – fever, urticaria, and limb pain; also associated with amyloidosis and deafness
- Urticarial lesions provoked by generalized exposure to cold in FCAS; delay of 2-3 hours, lasting up to 12 hours
- Urticarial lesions in MWS persist for longer (up to 3 days)
- Dermal edema, infiltrate of neutrophils on histology
- In MWS, progressive sensorineural hearing loss in adolescence in 2/3 to 3/4; nephropathy due to amyloid in up to 1/4

Cryopyrin Associated Periodic Syndromes

- For FCAS/MWS, NSAIDs and systemic steroids can be used during attacks to attenuate them and help with joint pain
- IL-1 blockade can limit number of attacks and prevent amyloidosis so should be considered especially in MWS
 – Treatment may help or reverse the hearing loss but not yet clear whether this is consistent

CAPS Treatment

- Mutation in Mevalonate Kinase (MVK) gene leading to reduced enzyme function
- Recurrent fevers, cervical lymphadenopathy, arthralgias, abdominal pain, rash
- At least 2 IgD levels above 100mg/L one month apart
 – Can also be seen in FMF, TRAPS, others
 – Genetic testing also available; mevalonic acid in urine elevated during attacks

Hyper-IgD Syndrome
Hyper-IgD Syndrome

- Skin eruption usually consists of erythematous macular eruption; biopsy may show vasculitic lesions
- Attacks up to 1 wk of lymphadenopathy, abdominal pain, rash, splenomegaly
- Treatment with steroids, IVIG, cyclosporine, statins
- Anakinra works well; from 1 to 5 mg/Kg per day
- Canakinumab 4mg/Kg q4-6 wk
- Newer reports of TNF inhibitors successfully treating HIDS

TNF-Receptor Associated Periodic Syndrome

- Mutation in TNF-Receptor superfamily 1A (TNFRSF1A) gene which encodes for the TNF receptor
- Skin lesions consist of erythematous macules/papules which then expand and coalesce into serpiginous or annular patches and plaques associated with deep pain beneath these areas (not usually seen in CAPS)
 - “painful erythemas”
- Upper extremities most commonly affected, migrates proximal to distally

Juvenile Autoinflammatory Diseases

- Many described with more being reported frequently in the literature (often with just a few cases)
- Blau, PAPA, PASH, SAPHO, CANDLE, DIRA
- Blau syndrome – mutation in NOD2/CARD15
 - Granulomatous arthritis, uveitis, skin lesions: “Tapioca grain-like papules”
 - Tx with steroids, MTX, Cys, anakinra, TNF inhibitors
Juvenile Autoinflammatory Diseases

- PAPA/PASH
 - PAPA = PG, Acne, Pyogenic Arthritis
 - PASH = PG, Acne, HS (suppurative hidradenitis)
 - Mutation in PSTPIP1 for the former (possibly for the latter)
 - PAPA more periodic, a/w fever, flares of joint pain, starting in childhood and improving into adulthood
 - PASH starts with HS/acne in adolescence with PG coming later in life, less episodic/fevers
 - Treatment with TNF inhibitors (helps more with cutaneous manifestations) or IL-1 inhibitors (help more with joint pain)
 - Recalcitrant cases of PASH responded to infliximab + dapsone + cyclosporine

- SAPHO – Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis
 - Clinically on a spectrum with CRMO (Chronic Recurrent Multifocal Osteomyelitis)
 - May present with bone pain, worse at night, associated with fevers
 - No specific cause identified
 - Often coincides with other inflammatory skin diseases (Psoriasis/Palmoplantar Pustulosis, Sweet’s Syndrome, Vasculitis) or IBD
 - Treat with acitretin/isotretinoin, biologics, DMARD’s

- Deficiency of the IL-1 Receptor Antagonist (DIRA)
 - Mutation in IL1RN (AR)
 - Neonatal onset; osteomyelitis; pustular eruptions; treat with anakinra

- Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and Elevated temperature (CANDLE)
 - Annular purpuric plaques, periorbital edema, partial lipodystrophy; typical facies
 - Mutation in PSMB8, involved in proteasome formation
 - Aberrant IFN signaling
 - Possible benefit of IFN inhibition

Summary: Monogenic Systemic Autoinflammatory Diseases

- Numerous autoinflammatory diseases
 - Multiple types and variations
- Treatments with IL-1 inhibitors tend to be effective as steroid-sparing agents
- Colchicine only consistently effective against FMF
- Genetic testing important to establish diagnosis
- Early treatment may prevent later sequelae such as amyloidosis
Outline

• What is autoinflammation?
• Classical/Monogenic Autoinflammatory Diseases
• Common Dermatologic Conditions featuring Autoinflammation
• Case Discussions

More common conditions featuring autoinflammation

• Numerous conditions also feature autoinflammation as a major cause of disease pathogenesis
• HS, PG, Psoriasis

Hidradenitis Suppurativa

• Recent studies show increase in IL-1β and IL-17 in lesional skin of HS
• Lesional DAMPs (S100A8/A9) are upregulated and the NLRP3 inflammasome is activated
• Early lesions show increased IL-17+ cells which in turn promotes release of IL-1β from keratinocytes

Biologics in HS

• Widespread evidence of good treatment results with both infliximab and adalimumab (now FDA-approved to treat HS)
• No such evidence for etanercept
 – Randomized double-blind trial showed no difference from control
• Newer reports and studies with ustekinumab
• 12 patients completed protocol, half achieved HS Clinical Response 50 (corollary to PASI-50)
Anakinra and HS

- Anakinra may be a treatment option in recalcitrant HS
- Successful treatment in a patient who failed oral antibiotics, azathioprine, cyclosporine, adalimumab, and infliximab

Pyoderma Gangrenosum

- IL-1β recently shown to be elevated in lesional skin
 - In the context of normal levels of TNF-α and IFN-γ
- Numerous autoinflammatory syndromes feature PG (PAPA, PASH, SAPHO – which can be a/w PG as well)
- Unclear etiology – could be that a persistent activation of inflammatory cascade (DAMP/PAMP, i.e. autoinflammation) may lead to the prolonged and unproductive inflammation in PG

<table>
<thead>
<tr>
<th>Pyoderma Gangrenosum</th>
<th>Systemics</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corticosteroids (60-80mg daily)</td>
<td>Topicals (steroids, cyclosporine, tacrolimus)</td>
</tr>
<tr>
<td></td>
<td>Immunosuppressants (MTX, cyclophosphamide, immunoglobulin, cyclosporine, colchicine)</td>
<td>Wet compresses</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials (dapsone, clofazirine, minocycline)</td>
<td>Hydrophilic occlusive dressing</td>
</tr>
<tr>
<td></td>
<td>Biologics (infliximab, other TNF-α inhibitors)</td>
<td>Hyperbaric oxygen</td>
</tr>
<tr>
<td></td>
<td>IVIG</td>
<td>Skin graft/flap</td>
</tr>
<tr>
<td></td>
<td>Thalidomide</td>
<td></td>
</tr>
</tbody>
</table>
Canakinumab for PG

- Dosed once, with optional doses at week 2 and week 8 depending on response
 - All patients received at least 2 doses
- 3/5 complete clearance, 1 partial response
- Previous treatments included steroids in all, and cyclosporine, azathioprine, cyclophosphamide, dapsone, IVIG, infliximab
- Sfx fatigue in 1, worsening of a lesion in 1

Traditional Biologics for PG

- Many case reports of successful treatment with infliximab and one randomized, double-blind, placebo-controlled trial
 - Several reports in populations with IBD

Biologics in PG

- Etanercept and adalimumab – results are more mixed
 - Case reports of success with either
 - Case reports of failure with both
 - One report of failure with etanercept but successful treatment upon switching to adalimumab

Biologics in PG

- One study found increased IL-23 expression in PG and successful treatment with ustekinumab
Biologics in PG

• Need a balanced approach considering risk of infection (and immunosuppression) and area/severity of disease
 – Should take into account underlying conditions (such as IBD) as well
 – Relapse is common, loss of effect is common
 – Keep in mind that ustekinumab has a slower onset of action than infliximab, systemic steroids, or cyclosporine
 – IL-1 inhibitors may represent a good therapeutic option in challenging cases

Autoinflammation in Psoriasis

• Increased levels of Caspase-1 in psoriasis lesional skin
• Polymorphisms of NLRP1/3 and CARD8 associated with susceptibility towards psoriasis
 – CARDs are Caspase Recruitment Domains

Autoinflammation in Psoriasis

• Mutations in CARD14 recently shown to be involved in the pathogenesis of psoriasis in multiple studies
 – Familial and sporadic
 – Found to be the locus for PSOR2
• IL-1 inhibitors not consistently effective in psoriasis

Autoinflammation in Dermatology

• HS, PG, and other neutrophilic dermatoses (including Sweet’s Syndrome) clearly linked to autoinflammation
• Psoriasis also characterized by some degree of autoinflammation
• Other entities reported to feature autoinflammation include Schnitzler’s Syndrome, Behçet’s Disease, generalized vitiligo, SLE, systemic sclerosis, acne, rosacea, and atopic dermatitis
Outline

- What is autoinflammation?
- Classical/Monogenic Autoinflammatory Diseases
- Common Dermatologic Conditions featuring Autoinflammation
- Case Discussions

Case 1

- 35 yo Jewish man presenting with recurrent episodes of arthralgia and rash of ankles since childhood.
- Also with monoarticular shoulder, knee, and foot pain for 10 years, episodic, for weeks at a time
- Sometimes with testicular pain/swelling, abdominal pain, and oral ulcers
- Fever 1-2 days with beginning of episodes

Case 1

- CRP elevated to 3 mg/dL
- Negative RF
- Trace proteinuria
Case 1

• Genetic testing ordered; positive for a single V726A mutation in MEFV
• Diagnosis of Familial Mediterranean Fever was made
• Patient started on colchicine 0.6mg PO TID with significant improvement however treatment had to be stopped due to severe diarrhea
• Pentoxifylline started but attacks persisted

• What next?

Case 1

• Etanercept 25mg twice weekly started
• Reduction of frequency, duration, severity of joint episodes
• No further abdominal/testicular attacks

*Note that the testicular pain/swelling is not a typical finding of FMF

Case 2

• 27yo woman presenting with nephritic syndrome noting a history of recurrent attacks of fever and abdominal pain since 18 months of age, requiring intermittent oral prednisolone
 – Increase severity/frequency of attacks in 6 months prior to presentation
 – Also a/w erythematous plaques of neck and arms
 – Fevers with episodes lasting weeks
 – Father with similar disease leading to renal failure
Case 2

• 24 hour urine protein excretion elevated, serum albumin 24 g/L (nl 30-48)
• CRP/ESR elevated
• Serum Amyloid P Scan – amyloid in kidneys and spleen

Case 2

• Genetic testing ordered; positive for C33Y TNFRSF1A mutation
• Diagnosis of TRAPS was made
• Twice weekly etanercept 25mg injections were started
• 4 months later, 24 hour urinary protein declined by 80%, serum albumin was WNL, serum amyloid P scan suggested regression of amyloid
• Symptoms much improved over 2 years later

Case 2

• 25yo German woman presented with renal failure, progressive over 3 yrs requiring dialysis
• AA amyloid found on renal biopsy
• Periodic febrile attacks from infancy, worse in the winters, lasting a little under a week each time
• Other symptoms included headache, cervical and inguinal lymphadenopathy, and vomiting/diarrhea
• IgG2/4 deficiencies noted in adolescence led to treatment with IVIG without benefit
Case 3

- Serum IgD checked and was elevated to 104 mg/L
- Genetic testing showed MVK V377I and MVK L234P mutations
- Diagnosis of Hyper-IgD Syndrome was made
- Etanercept started with good response and attenuation of attacks (however renal failure persisted)

Case 3

- IgG deficiency was a red herring (not common)
- Lack of arthralgia is abnormal

Case 4

- 22yo woman presents for evaluation of joint pains, rash on legs, and conjunctivitis
- R great toe arthritis presented at age 8 and patient started having transient urticarial rashes, conjunctivitis, and arthralgia with fever lasting a few days only at a time
 - Flares occurred every 3-4 years since then
 - Also with occasional synovitis
- At about age 9, she started having progressive high frequency hearing loss
 - Hearing aids required at age 19
Case 4

- CRP elevated to 60mg/L (normal <3)
- WBC count 19,000 /mm³
- NSAIDs given for symptom relief, helped with the joint pain but CRP and WBC count remained elevated

Case 4

- Genetic studies ordered; heterozygous E311K mutation in CIAS1 gene identified
- Diagnosis of CAPS/Muckle Wells Syndrome was made
- Patient started on anakinra 100mg SQ daily
- CRP reduced by half within 1 month, approaching normal by 2 months
- WBC count normalized
- Repeat audiogram after 3 months of treatment revealed nearly complete regression of deafness and hearing aids not needed anymore

Case 4

- After several months, anakinra dosage reduced to 100mg every other day since patient was stable but CRP levels began to rise so she resumed 100mg daily dosing
Case 5

- 41 yo Hispanic woman presented with breast lesions for several weeks unresponsive to systemic antibiotics
- Pt had a bilateral breast reduction surgery prior to development of these lesions

Case 5

- Pt had breast reduction surgery 10 days prior to presentation at surgery clinic where she was started on Bactrim and Ciprofloxacin PO for cellulitis
- The next day, she presented to the ER with fever, intense pain, and leukocytosis
- Antibiotics were given, including vancomycin, aztreonam, metronidazole, daptomycin, and amikacin
- Multiple cultures negative, CT scan showing lack of loculated infection
- Daily fevers persisted
- Dermatology consulted 2 weeks later
Case 5

- Biopsy taken; consistent with pyoderma gangrenosum (as was the clinical presentation)
- Patient was started on prednisone, topical diflorasone, and doxycycline

Case 5

- EKG showed prolonged QT and labs revealed increased K (5.5)
- Doxycycline discontinued due to QT prolongation
- Cyclosporine not considered due to hyperkalemia and coincident altered renal function
- Lesions not improving

Suggested References

- Fenini G, Contassot E, French LE. Potential of IL-1, IL-18, and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases. Front Pharmacol. 2017; 8: 278.

Case 5

- Colchicine 0.6mg BID and Dapsone 12.5mg QD added to regimen
- Pt gradually improved over the next few months and lesions healed
Acknowledgment

• Dr. Qingping Yao
 – Chief of Rheumatology, Allergy, and Immunology at SUNY Stony Brook
 – Director of the Center for Autoinflammatory Diseases

Thank you!

george.han@mountsinai.org