U021: Monogenic autoinflammatory syndromes

Dominique C. Pichard, MD, MS
Dermatology Branch
NIH

Amanda Ombrello, MD
Inflammatory Diseases Section
NIH

March 2, 2019
DISCLOSURES

We do not have any relevant relationships with industry.

We will be discussing off-label use of many medications.
Objectives

• Formulate a framework for understanding monogenic autoinflammatory syndromes

• Recognize targeted therapies for autoinflammatory conditions based on pathways involved

• Describe clinical features of monogenic autoinflammatory syndromes due to alterations in the inflammasome, the NF-kB pathway, and the interferon pathway.
Autoinflammatory Disease

- Disorders of the innate immune system
 - Autoimmune disease: adaptive immune system
- Seemingly unprovoked episodes of intense inflammation
- No high-titer autoantibodies or antigen specific T-cells
<table>
<thead>
<tr>
<th>Disease</th>
<th>Year mutation published</th>
<th>Gene/protein</th>
<th>Inheritance pattern</th>
<th>Disease onset</th>
<th>Flare/flare pattern</th>
<th>Specific organ inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMF (MIM 249100)</td>
<td>1997</td>
<td>MEFV/pyrin</td>
<td>AR</td>
<td>80% of the cases occur before the age of 20 y</td>
<td>1-3 d</td>
<td>Skin, joints, peritoneum, pleura</td>
</tr>
<tr>
<td>TRAPS (MIM 191190)</td>
<td>1999</td>
<td>TNFRSF1A/TNFRSF1A, TNFR1, p55</td>
<td>AD</td>
<td>Median age at onset of 3 y</td>
<td>1-6 wks</td>
<td>Skin, eyes, joints, peritoneum, pleura</td>
</tr>
<tr>
<td>CAPS FCAS (MIM 120100)</td>
<td>2001</td>
<td>CHIAsi or NLRP3/cryopyrin or NLRP3 or NALP3</td>
<td>AD</td>
<td>First 6 mo of life, cold <24 h induced</td>
<td></td>
<td>Skin, eyes, joints</td>
</tr>
<tr>
<td>MWS (MIM 191900)</td>
<td>2001</td>
<td>CHIAsi or NLRP3/cryopyrin or NLRP3 or NALP3</td>
<td>AD</td>
<td>Infancy to adolescence</td>
<td>24-48 h</td>
<td>Skin, eyes, joints, inner ears, meninges (mild)</td>
</tr>
<tr>
<td>NOMID (MIM 607115)</td>
<td>2002</td>
<td>CHIAsi or NLRP3/cryopyrin or NLRP3 or NALP3</td>
<td>ADide novo</td>
<td>Neonatal or early infancy</td>
<td>Continuous with flares</td>
<td>Skin, eyes, joints, acrora, prominant lymph nodes</td>
</tr>
<tr>
<td>HIDS (MIM 260920)</td>
<td>1999</td>
<td>MUK/involution kinase (MK)</td>
<td>AR</td>
<td>Median age at onset 6 mo</td>
<td>3-7 d</td>
<td>Skin, eyes, joints</td>
</tr>
<tr>
<td>PGA (MIM 136580)</td>
<td>2001 and 2005*</td>
<td>NOID2 or CARD15/NOD2 or CARD15</td>
<td>ADide novo</td>
<td>Early childhood</td>
<td>Continuous</td>
<td>Skin, eyes, joints</td>
</tr>
<tr>
<td>PAPA (MIM 604416)</td>
<td>2002</td>
<td>CD2BP1 or PSTPIP3/CD1BP1 or PSTBP1</td>
<td>AD</td>
<td>Early childhood</td>
<td>Prolonged flares</td>
<td>Skin, joints</td>
</tr>
<tr>
<td>Majed syndrome (MIM 609628)</td>
<td>2005</td>
<td>LPIN2/LPIN2</td>
<td>AR</td>
<td>Early infancy (1-19 mo)</td>
<td>Weeks to months</td>
<td>Bones, peritoneum, anemia</td>
</tr>
<tr>
<td>Chénetion (MIM 118400)</td>
<td>2001</td>
<td>SH3BP2/E3BP2</td>
<td>AD</td>
<td>Childhood spontaneous remission by 3rd decade</td>
<td>Continuous early in life</td>
<td>Jaws, eyes (rare)</td>
</tr>
<tr>
<td>FCAS2 (MIM 611762)</td>
<td>2008</td>
<td>NLRP12/NLRP12 or NALP12</td>
<td>AD</td>
<td>Childhood, cold induced</td>
<td>2-10 d, 1-3 x per month</td>
<td>Continuous with flares</td>
</tr>
<tr>
<td>DIRA (MIM 612852)</td>
<td>2009</td>
<td>IL1RI/IL-1Ra</td>
<td>AR</td>
<td>Neonatal or early infancy</td>
<td>Continuous with flares</td>
<td>Skin, bones, lungs (rare), vasculitis (rare)</td>
</tr>
</tbody>
</table>
Comparison Chart of Systemic Autoinflammatory Diseases (SAID)

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>SADT</th>
<th>Synonym</th>
<th>Clinical Features</th>
<th>Laboratory</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muckle-Well Syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perozyne Syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.autoinflammatory.org/compchart.php
The Growing List of Autoinflammatory Diseases

- Familial Mediterranean Fever (MEFV)
- Tumor necrosis factor receptor associated periodic syndrome (TRAPS) (TNFRSF1A)
- Hyper IgD Syndrome/Mevalonate Kinase Disease (MVK)
- Cryopyrin Associated Periodic Syndromes (NLRP3)
- Deficiency of IL-1 Receptor Antagonist (DIRA) (IL1RN)
- Deficiency of IL-36 receptor antagonist (DITRA) (IL36RN)
- Pyogenic Arthritis Pyoderma Gangrenosum and Acne (PAPA) (PSTPIP1)
- PAPA-like disorders (PASH, PPASH, PAPASH)
- Synovitis Acne Pustulosis Hyperostosis Osteitis (SAPHO)
- Proteasome Associated Autoinflammatory Syndrome (PRAAS) (PSMB8)
- Deficiency of Adenosine Deaminase Type 2 (DADA2) (ADA2)
Inflammasome and IL-1β production

- FMF
- DIRA
- CAPS
- PAPA
Familial Mediterranean Fever syndrome

• Mutation of *MEFV* gene, which encodes the protein pyrin
• Periodic fevers lasting 1-3 days
• Inflammation of the serosal membrane: abdomen, heart, lungs
• Monoarticular arthritis of large joints
• Amyloid deposition in organs → mortality
• Treatment: Colchicine, anti-IL-1
FAMILIAL MEDITERRANEAN FEVER

Signs and Symptoms

CARDINAL

% in our cohort of patients with mutations (47)

96% Fever

57% Pleurisy

2% Amyloidosis

91% Sterile Peritonitis

45% Arthritis/Arthralgia

13% Erysipelas-Like Erythema

During Attacks

ESR
WBC
Fibrinogen
Microscopic Hematuria/Proteinuria

Other

Headache
Aseptic Meningitis
Pericarditis
Splenomegaly
Polyarteritis Nodosa
Glomerulonephritis

Henoch Schönlein Purpura
Acute Scrotum
Febrile Myalgia

Proteinuria
Scattered Purpura

Samuels et al., Medicine (Baltimore) 77:268, 1998
Familial Mediterranean Fever

- Autosomal Recessive
- MEFV

The Pyrin Inflammasome

IL-1β Converting Enzyme (ICE)
Cutaneous Manifestations of FMF

• Erysipeloid erythema histopathology:
 o Superficial dermal edema and sparse perivascular infiltrate composed of neutrophils and few lymphocytes
 o Direct immunofluorescence: C3 deposits in vessel walls

• Treatment:
 o Colchicine
 o IL-1 blockade
The Cryopyrinopathies

“Neutrophilic dermatoses” due to mutation in NLRP3

Histology:
- Neutrophilic infiltrate
- Interstitial/perivascular neutrophils and lymphocytes
- Absence of dermal edema and vasculitis
The Cryopyrinopathies

• Familial Cold Autoinflammatory Syndrome

• Muckle-Wells Syndrome

• Neonatal Onset Multisystem Inflammatory Disease
FCAS: Familial cold autoinflammatory syndrome

• Cold-induced inflammation: urticaria, arthralgias, conjunctivitis, headaches
• Episodes < 24 hours
• No organ damage

http://www.autoinflammatory.org/fcas.php
MWS: Muckle-Wells syndrome

- Continuous inflammatory symptoms: fever, urticaria, arthritis, conjunctivitis, episcleritis
- Sensorineural hearing loss in 2nd-4th decade
- 25% develop amyloidosis

Nguyen et al. JAAD. 2013;68:834-853
NOMID/CINCA: Neonatal onset multisystem inflammatory disease

- Urticarial rash with fever
- Arthropathy: overgrowth patella, epiphyses of long bones; joint contractures
- Chronic aseptic meningitis \(\rightarrow\) intracranial pressure, ventriculomegaly, cerebral atrophy, seizures, vision loss
- Sensorineural hearing loss
- Short stature, frontal bossing
- Risk of amyloidosis

CAPS treatment

- Mutations in *NLRP3* gene → constitutive inflammasome activation (more IL-1β)
- IL-1RA blocks IL-1 mediated signaling
- IL-1 blocking agents as therapy

Goldbach-Mansky, Kastner. JACI. 2009;124:1141-9
Beer et al. JID. 2014;134:1805-1810
Could This be NOMID?

DIRA: Deficiency of IL-1 receptor antagonist

- AR mutation in *IL1RN* \rightarrow unopposed IL-1
- Neonatal onset:
 - Fetal distress
 - Pustulosis
 - Oral mucosal lesions
 - Joint swelling/pain
 - Skeletal disease
- No fever

Aksentijevich et al. NEJM. 2009;360:2426-37
Deficiency of the IL-1 Receptor Antagonist (DIRA)

- Histopathology:
 - Epidermal acanthosis
 - Hyperkeratosis
 - Epidermal and dermal neutrophilic infiltrate with pustule formation along hair follicles

- Treat with the IL-1 receptor antagonist: anakinra

DIRA: Response to anakinra

Askentijevich et al. NEJM. 2009;360:2426-2437
Pyogenic Arthritis with Pyoderma Gangrenosum and Acne Syndrome (PAPA)

- Autosomal Dominant
- $PSTPIP1$
The Alphabet Soup of PAPA-like disorders
Treatment of PAPA and PAPA-like Diseases

- Glucocorticoids
- Anti-TNF agents
- Anti-IL-1 agents
- For \textit{PSTPIP1} positive
 - IL-18 blockade?
- IL-17 inhibition
- IL-23 inhibition
NF-κB signaling disorders

HA20
Haploinsufficiency of A20: Behçet’s-like

- Childhood onset
- Typical findings:
 - Skin lesions
 - Oral/genital ulcers
 - Ocular inflammation
 - Arthralgia/arthritis
 - GI inflammation

Function of A20
NF-κB Pathway

• Common low-penetrance coding and non-coding polymorphisms in associated with autoimmune diseases.

• A20 is an anti-inflammatory protein.
 • Cleaves K63 Ub chains, disrupting the signaling complex.
 • Adds K48 Ub chains, targeting proteins for proteasome degradation.
A20 is a potent inhibitor of NF-κB
Anakinra treatment

Initial experience in a patient (P6) with an agent targeting IL-1β has been positive.
Haploinsufficiency of A20 treatment

- Our NIH cohort is treated with:
 - Anti-TNF therapy
 - Anti-IL-1 therapy (continuous versus prn)
 - Prednisone prn or daily
 - Varying combinations of the above
 - Anti-IL-6 therapy
 - Other?

EXTENDED REPORT

A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis

Katelijne De Wilde,1,2 Arne Martens,3,4 Stijn Lambrecht,1,2 Peggy Jacques,1,2 Michael B Drennan,1,2 Karlijn Debusschere,1,2 Srinath Govindarajan,1,2 Julie Coudryns,1,2 Eveline Verheugen,1,2 Fien Windels,1,2 Leen Catrysses,3,4 Rik Lories,5,6 Dennis McGonagle,7 Rudi Beyaert,4,8 Geert van Loo,3,4 Dirk Elewaert,1,2
Interferonopathies

CANDLE

SAVI
Proteasome-associated autoinflammatory syndromes (PRAAS)

- Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE)
- Nakajo-Nishimura syndrome (NNS)
- Japanese autoinflammatory syndrome with lipodystrophy (JASL)
- Joint contracture, muscle atrophy, panniculitis-induced lipodystrophy (JMP)
Case & Review

Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome

Antonio Torrelo, MD, Sapna Patel, MD, Isabel Colmenero, MD, Dolores Gurbindo, MD, Francisco Lendínez, MD, Angela Hernández, MD, Juan Carlos López-Robledillo, MD, Ali Dadban, MD, Luis Requena, MD, and Amy S. Paller, MD

Madrid and Almería, Spain; Chicago, Illinois; and Amiens, France
CANDLE: Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and Elevated temperature syndrome

• Perinatal
 o Fever, persistent erythematous annular plaques
• Late infancy
 o Periorbital erythema, digital edema
• Early childhood
 o Lipodystrophy, LAD, anemia, arthritis/arthritis
• Late childhood
 o Hepatomegaly, cardiomyopathy
IFN signaling: JAK-STAT pathway

- Cytokines bind TM receptors associated with Jaks
- Binding activates Jaks
- Jaks phosphorylate receptors
- STATs bind receptors
- Jaks phosphorylate STATs
- STAT translocates to the nucleus
- STATs bind DNA and regulate transcription
Cytokines associated with Jaks

- First generation Jak inhibitors: ruxolitinib, tofacitinib, baricitinib
 - Block multiple Jaks
 - Multiple cytokines
 - Inhibit adaptive, innate responses
 - Small molecules
 - Varying half-lives
 - Varying effects on different cytokines
Preliminary response to Janus kinase inhibition with baricitinib in chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE)

G Montealegre1, A Reinhardt2, P Brogan3, Y Berkun4, A Zlotogorski4, D Brown5, P Chira6, L Gao7, J Dare8, S Schalm9, R Merino10, D Chapelle1, H Kim1, S Judd1, M O’Brien1, A Almeida De Jesus1, Y Kim11, B Kost1, Y Huang1, S Paul12, A Brofferio13, C-C Lee14, C Hadigan15, T Heller11, C Minniti13, K Rother11, R Goldbach-Mansky1

From 8th International Congress of Familial Mediterranean Fever and Systemic Autoinflammatory Diseases Dresden, Germany 30 September - 3 October 2015
Activated STING in a Vascular and Pulmonary Syndrome

SAVI: STING-associated vasculopatthy with onset in infancy

• Autosomal dominant, mutation in TMEM173
 o Encodes adaptor protein STING
 o Mediates production of IFNβ
 o Elevated IFN → autoinflammation similar to PRAAS

• Cardinal features
 o Early-onset systemic inflammation
 o Severe cutaneous vasculopathy
 o Pulmonary inflammation
 o Poor response to steroids, DMARDs
Violaceous scaling lesions

Nail dystrophy and loss

Ulcerated lesions

Microthrombotic vasculopathy/Gangrene

Hyperkeratotic cornified skin

Ulcerated lesions with scabs

Tissue loss and scarring
Constitutive phosphorylation of STAT1 was blocked by JAK inhibitors

Liu et al. NEJM. 2014;371:507-518
SAVI: Prognosis

- High mortality (3/7)
- Unresponsive to multiple agents
 - Pred, CYP, AZA, CSA, MTX, MMF, IVIG, belimumab, HCQ, TNF-α inhibitor, leflunamide, RTX, ASA, nifedipine
- Interferon pathway-specific Tx: baricitinib
JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies

CANDLE syndrome

SAVI syndrome
Summary

• We have reviewed monogenic autoinflammatory disorders related to:
 o Inflammasome and IL-1β production
 o NF-κB signaling disorders
 o Type I Interferonopathies

• We discussed the clinical manifestations and pathogenesis of these disorders

• Knowing the genes, pathways, and cytokines involved has led to use of rationale treatments
NIH Clinical Center

ombrelloak@mail.nih.gov; picharddc@nih.gov

Referrals: ajones@mail.nih.gov, Tina.Romeo@nih.gov