Field Cancer and Multiple SCC: Molecular Insights and Clinical Management

Sean R. Christensen, MD, PhD
Assistant Professor
Yale University School of Medicine
Department of Dermatology
Section of Dermatologic Surgery and Cutaneous Oncology

DISCLOSURE OF RELATIONSHIPS WITH INDUSTRY

Sean R. Christensen, MD, PhD

DISCLOSURES
Novartis: Investigator — Research Funding

I will discuss off-label treatments not approved by the FDA
The Problem: Multiple lesions in the field

Only 1 SCC, but numerous AK pose significant risk of subsequent cancer

AK in a sun damaged “field” of skin are analogous to weeds in a garden or field

SCC in situ (1st skin cancer)

The Problem: Multiple SCC

SCC 1 year ago

SCC 1 year ago

SCC and SCC in situ
Recurrent after Mohs surgery

Many SCC and AK
Multiple SCC Associated with Poor Prognosis

1. **Increased risk of subsequent SCC**
 - After first SCC, 42% subsequent SCC within 5 years
 - After second or later SCC, 72% subsequent SCC within 5 years
 (Wehner, M.R, et al. *JAMA Dermatology* 2015; v151:p382)

2. **Increased risk of SCC progression**
 - Patients with 2-9 SCC: 2X risk of recurrence, 2.5X risk of nodal metastasis
 - Patients with >10 SCC: 12X risk of recurrence, 11X risk of nodal metastasis

The Problem: Progressive Disease

Man in late 80s, >10 prior SCC/BCC

12 month period:
8 new SCC
7 new BCC

Rapidly enlarging neck mass
Metastatic SCC
Treated with surgery and radiation
Died 18 months later
• Review of 783 cases of oral SCC
• 11% of cases had multiple primary lesions (grossly)
• In all cases, adjacent clinically benign mucosa was microscopically abnormal
 • Dyskeratosis and separate islands of SCC in situ or invasive SCC

• Proposed the concept of “field cancerization”
 • An area of epithelium is altered by a regional carcinogenic effect, leading to irreversible changes that eventually manifest in cancer

Proof of concept in cutaneous SCC
• 57% of normal skin adjacent to SCC had pathologically diagnosed AK
 Lanoue, Chen, and Goldenberg, Cutis 97:415, 2016
• 79% of normal skin biopsies in field of AK harbor AK or SCC

Key implications
• Oral (and cutaneous) SCC arises from multifocal areas of precancerous change
• “Recurrence” after excision may represent new primary cancer development
Working Definition of Field Cancer

>3 AK or presence of “AK patch” (AK >1 cm) associated with 6-18x increased risk of SCC

Field Cancer: 3 features
- defined region of skin
- multiple AK (or AK patch)
- at least 1 SCC

Multi-step Tumorigenesis

Hypotheses:
1. Burden of precursor lesions determines risk of carcinoma ✅ YES
2. Treatment of precursor lesions decreases incidence of carcinoma ✅ YES

Genetic Drivers of Cutaneous SCC

- Genome-wide sequencing has identified recurrent driver mutations in SCC
- >85% of mutations are UV signature mutations

<table>
<thead>
<tr>
<th>SCC tumors sequenced</th>
<th>Gene Mutation Frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>TP53 95% 59% 51%</td>
<td>Pickering, et al., Clin Cancer Res 2014</td>
</tr>
<tr>
<td>11</td>
<td>91% 75% 42%</td>
<td>Wang, et al., PNAS 2011</td>
</tr>
<tr>
<td>20</td>
<td>65% 40% 50%</td>
<td>South, et al., J Invest Dermatol 2014</td>
</tr>
<tr>
<td>100</td>
<td>42% 54% 34%</td>
<td>Lee, et al., Nat Genet 2014</td>
</tr>
</tbody>
</table>

- **TP53** is the gene encoding the p53 tumor suppressor protein, often called the “guardian of the genome”
- Majority of actinic keratoses (>60%) also harbor **TP53** mutations

TP53 Mutant Clones Expand with UVB Exposure

- Mutant **TP53** cells can be identified by antibody staining as clusters or clones
- Number of clusters correlates with skin cancer risk

- Mice exposed to daily UVB develop **TP53** mutant clones
- Clones increase in number and size only during UVB exposure

Stopping UVB exposure decreased the number of pre-malignant lesions

High Burden of Carcinogenic Mutations in Normal Skin

- DNA sequencing of normal eyelid skin
- Up to 32% of skin cells had carcinogenic mutations (UV signature)
- Mutation burden in normal skin was comparable to breast cancer
- Sun-exposed skin is “a patchwork of thousands of evolving clones”

Sunblock Use Decreases AK (and Field Damage)

- Australian trial, 588 patients with 1-30 AK
 - randomized to SPF 17 sunblock vs vehicle, instructed to apply 4.5 ml daily
 - 7 month follow up over summer months
- Sunscreen = 28% reduction in new AK
 - and 39% increased regression of old AK
- Patients using greatest amount of sunblock had greatest protection
 - recommended amount: 950g (33 ounces)

For actinic field damage, regular sunblock use is effective even in patients with established disease.
Sunblock Use Decreases SCC

- Australian population-based trial of 1621 patients
 - low risk population, only 27% had history of skin cancer
 - randomized to SPF 16 broad-spectrum sunscreen daily vs “discretionary use”
 - follow up every 3 months for 4 years

- **Sunscreen = 39% reduction in new SCC** (28 vs. 48 SCC, $p < 0.05$)
 - sunscreen had no effect on BCC

- Additional 8 year follow up of same patients
 - sunscreen use was discretionary in follow up period
 - **Sunscreen = 41% reduction in new SCC** (81 vs 142 SCC, $p < 0.05$)

Sun Protection Basics

- Don’t forget the ears
- Combine with physical protection:
 - Hat
 - Sunglasses
 - Clothing
Summary: Field Cancer Paradigm

1. SCC is caused by the accumulation of genetic mutations induced by UV radiation
2. Visible (actinic keratosis) and invisible (mutant clone) lesions precede SCC development
3. A sun-damaged field has thousands of mutant clones with malignant potential
4. Patients with multiple AK and SCC are at increased risk of adverse outcomes
5. Lesion-directed therapy alone does not address invisible precursors (TP53 clones) in high risk patients

Field-Directed Therapy

This (not just this)

1. Sun protection
2. Topical therapy
 - 5-fluorouracil
 - Imiquimod
 - Ingenol mebutate
3. Photodynamic therapy
4. Systemic therapy
 - Acitretin
 - Nicotinamide
5. Special considerations in transplant recipients
• 954 moderate risk patients: >2 SCC or BCC in prior 5 years (>1 on face)
• Randomized to 5-FU 5% cream twice daily (face and ears) for 2-4 weeks OR vehicle control
• 2.8 year median follow up

Any SCC at 1 year:
4% of 5-FU group 1% of control
p = 0.002

5-Fluorouracil: Titrate to Effect
Various preparations and dosing regimens available

• 207 low risk patients (>5 AK) randomized to 0.5% 5-FU cream once daily for 1, 2 or 4 weeks, or vehicle control
• Increasing efficacy (and local irritation) with longer duration of treatment

5-Fluorouracil Combination with Calcipotriol?

Calcipotriol is a topical vitamin D derivative used as immunomodulatory treatment for psoriasis
Calcipotriol shown to promote T cell activation and anti-tumor response in animal models

- Clinical trial of topical 5-FU combined with calcipotriol
- 132 low risk patients (>5 AK) randomized to twice daily treatment x4 days:
 - 5-FU plus calcipotriol
 - OR
 - 5-FU plus Vaseline vehicle
- Clinical assessment of visible lesions at 8 weeks

Repeating PDT Is Required for Suppression

1. Prospective study of 12 transplant patients treated with cyclic PDT to arms (or legs) every 4-8 weeks for 2 years

<table>
<thead>
<tr>
<th></th>
<th>12 months before PDT</th>
<th>1st year of PDT</th>
<th>2nd year of PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median number of SCC</td>
<td>20</td>
<td>4 (79% reduction)</td>
<td>1 (95% reduction)</td>
</tr>
</tbody>
</table>

2. Trial of 40 transplant patients randomized to receive PDT one arm only: over 2 year follow up, 15 SCC in PDT arm and 10 SCC in control arm
Repeated PDT Is Required for Suppression

- PDT decreases, but does not eliminate, TP53 mutant clones (Bagazgoitia, et al., Br J Dermatol 165:144, 2011)

![pre PDT](image1) ![post PDT](image2)

- Current field treatments are only suppressive, and must be repeated or continuous to maintain SCC prevention

Unique Features of Lower Extremity SCC

- Retrospective review of patients with >4 lower extremity SCC
 - 18 female, 4 male
 - Age 62-92 years
- Over 4.5 years:
 - 360 SCC (average 16 SCC/patient)
 - 74 SCC in situ
 - 54 BCC
- All SCC treated with local surgery, no metastasis or local progression

Case Example: Field Cancer on Legs and Acitretin

- Pooled data from 2 patients treated with acitretin, 10 – 25 mg/day
- Largest lesions were treated surgically
- Both patients without further SCC after 6 months on acitretin
- Both patients discontinued acitretin after 12-18 months, no rebound

Field Cancer on Legs Treated with Chemowraps
5-Fluorouracil 5% cream under occlusion with zinc oxide compression wraps: apply once weekly

References:
Field Cancer Risk Management

<table>
<thead>
<tr>
<th>Field Cancer Risk</th>
<th>Clinical Features</th>
<th>General Management</th>
<th>Primary Field Treatment</th>
<th>Secondary Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>Multiple AK in field AND ≥ 1 SCC</td>
<td>UV protection and lesion-directed therapy as indicated</td>
<td>Topical or PDT field therapy as needed</td>
<td>Consider nicotinamide</td>
</tr>
<tr>
<td>MODERATE</td>
<td>Multiple AK AND 2-3 SCC/year</td>
<td></td>
<td>Repeated topical or PDT field therapy</td>
<td>Consider acitretin</td>
</tr>
<tr>
<td>HIGH</td>
<td>Multiple AK AND >3 SCC/year OR >10 lifetime SCC</td>
<td></td>
<td>Acitretin</td>
<td>Repeated field therapy, consider additional systemic agent</td>
</tr>
</tbody>
</table>

Case Example

- Man in mid 70s
- 10-15 grade 1-2 AK on scalp
- Several hypertrophic lesions and AK patches
- 2cm keratotic plaque
- 5 SCC in prior 2 year period
- Previous 5-FU and PDT treatment (over 1 year ago)
Case Example: Moderate Risk Field Cancer

Requires Combination Therapy
1. Biopsy of 2 lesions
 a. SCC in situ
 b. Hypertrophic AK
2. Mohs surgery for 2cm SCC in situ
3. Lesion-directed therapy: cryotherapy or shave or curettage of hypertrophic AK
4. PDT field therapy to scalp 1-3 months after Mohs (may repeat)
5. Nicotinamide therapy
6. Consider acitretin if persistent 2-3 SCC/year

Summary: Field Directed Therapy

<table>
<thead>
<tr>
<th>Field Treatment</th>
<th>Advantages</th>
<th>Drawbacks</th>
<th>FDA Approved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-fluorouracil</td>
<td>Predictable response, proven reduction in SCC</td>
<td>4 week treatment</td>
<td>Only for AK</td>
</tr>
<tr>
<td>Imiquimod</td>
<td>Unpredictable, >4 week treatment</td>
<td>Only for AK</td>
<td></td>
</tr>
<tr>
<td>Ingenol mebutate</td>
<td>Short 2-3 day treatment</td>
<td>Unpredictable, may be costly</td>
<td>Only for AK</td>
</tr>
<tr>
<td>PDT</td>
<td>Single day treatment, ensured compliance</td>
<td>Specialized equipment, time-intensive (for MD)</td>
<td>Only for AK</td>
</tr>
<tr>
<td>Acitretin</td>
<td>Potent reduction in SCC</td>
<td>Laboratory monitoring, side effects, potential rebound phenomenon</td>
<td>NO</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>Well-tolerated OTC supplement</td>
<td>Minimal SCC reduction, minimal clinical experience</td>
<td>NO</td>
</tr>
<tr>
<td>Field Cancer Risk</td>
<td>Clinical Features</td>
<td>General Management</td>
<td>Primary Field Treatment</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>LOW</td>
<td>Multiple AK in field AND ≥ 1 SCC</td>
<td>UV protection and lesion-directed therapy as indicated</td>
<td>Topical or PDT field therapy as needed</td>
</tr>
<tr>
<td>MODERATE</td>
<td>Multiple AK AND 2-3 SCC/year</td>
<td></td>
<td>Repeated topical or PDT field therapy</td>
</tr>
<tr>
<td>HIGH</td>
<td>Multiple AK AND >3 SCC/year OR >10 lifetime SCC</td>
<td></td>
<td>Acitretin</td>
</tr>
</tbody>
</table>

Thank You

Questions or comments:

sean.christensen@yale.edu

The Dermatology Foundation

has supported & advanced my career.