F024: Photodynamic Therapy in Medical and Aesthetic Dermatology

Improving Efficacy and Maintaining Safety of ALA-PDT

American Academy of Dermatology
76th Annual Meeting
San Diego, CA

Maria M. Tsoukas, MD, PhD
Associate Professor
Head and Program Director
Department of Dermatology
University of Illinois at Chicago

Email: tsoukasm@uic.edu
NO CONFLICT OF INTEREST

PDT research work awarded by:
--The American Society for Dermatologic Surgery Cutting Edge Research Grant

Advisory Board
-- Biofrontera, Ameluz
Outline

- Photodynamic Therapy – Challenges and Limitations
- Medical applications - high risk patients
- Combination field cancerization therapies
- Cosmetic approaches
- Future Goals
PDT Procedure

1. Photosensitizer
2. Skin preparation and application
3. Light exposure
4. Post treatment follow up and skin care
5-ALA

- **20% ALA** (Levulan, Kerastick®, DUSA Pharmaceuticals)
 - 2 sealed glass ampoules
 - 354 mg δ - ALA hydrochloride powder
 - 1.5 ml hydroalcoholic solvent
 - Crushed within the applicator, at the time of use
 - Hand shaken, 3 min, to dissolve δ - ALA

- **10% ALA gel**, aminolevulinic acid hydrochloride (Ameluz®, Biofrontera)
 -- Direct application to skin
 -- Lesion and field directed
Topical δ - ALA

- 1999: FDA Approved for the treatment of AK
- 20% δ-ALA incubated for 14-18 hours
- Activation by light at 400-410 nm (16 min)
- Targets dysplastic proliferating and malignant epidermally derived and immune cells while sparing mesenchymal tissue including dermis
- Potential for treating multiple lesions simultaneously, rapid healing, little to no scarring and excellent cosmetic result
ALA-PDT

- MAL Metvix/Metvixia (Galderma, Lausanne, Switzerland) - red light: AKs, BD, sBCC, nBCC
- Alacare (Spirig AG, Egerkingen, Switzerland) - red light, mild AKs
Photosensitizers/ Protocols

- ALA: Hydrophilic, MAL: Lipophilic
 - No significant difference in AK and nBCC
- BF-200 ALA: nano-emulsion: stability and penetration
 - Compared to MAL in AKs: 78%-64% respectively
- Alacare /skin colored patch: occlusion
 - Better efficacy and superior to cryotherapy
- ALA-PDT: single session repeated q 4-12 weeks
- MAL-PDT: AK 1 session, BD and BCC 2 sessions 1 week apart, repeated 3 months
 - JEADV 2013;27:672-9
Light Delivery System

- Blue light source, Blue-U, DUSA Pharmaceuticals
 - Emission at narrow spectrum
 - Peak output 417 ± 5 nm
 - Exposure time: 16 minutes

- Pain management
 - Portable fan
 - Acetaminophen po
 - Ice packs
 - Topical lidocaine (3%) cream
Light Sources

- Lasers, filtered xenon arc, metal halide or fluorescent lamps, LEDs, IPLs
- Blu U (DUSA) 417 nm
- Aktilite (Galderma) 630-635 nm
- Omnilux (Phototherapeutics Ltd)
- Rhodoled (Biofrontera)
- Higher efficacy when narrow band light sources are used
Light Sources

- **Fractionation**: discontinuous illumination
 - 2-3 hour intervals, similar or increased light dose
 - Permits tissue oxygenation during dark periods
 - Higher efficacy in sBCC, not in Bowen’s Disease

- **Daylight PDT**:
 - Efficient AK eradication, cost effective, less pain
Dosimetry: Important Factors

Drug and light dose “reciprocity”?

- Light sensitizing agent
- Bio-distribution
- Incubation time
- Irradiation time point following drug delivery
- Absorption maxima of photosensitizer
- Irradiation wavelength
- Light dose (fluence)
- Light irradiance
PDT Patient Selection

- **Indications**
 - 18-95 yo
 - Skin Types I-IV
 - Extensive Photodamage
 - Not good surgical candidates
 - Patient compliance

- **Contraindications**
 - H/o Porphyria
 - Photosensitivity
 - Active infectious disease
 - Pregnancy / Lactation
 - Photosensitizing Drugs
Why patients may prefer PDT and what they want to know:

• Overall downtime
• Appearance of skin during course (0-7 days)
• Discomfort
• Clinical response
• Long term cure rates
• Final cosmetic outcome
• Compliance
• Off Label treatment
Skin Clinical End Points

- Erythema
- Edema
- Scaling
- Eschar
- Post peel erythema
- Transient pigment changes
- Recurrence

- If evidence of:
 - Alopecia
 - Scarring
 - Temporary/Permanent pigment changes
Common Challenging Factors in ALA-PDT:

• Light and Photosensitizer penetration in skin
• Conversion of ALA to PPIX
• Target selectivity
• Lesion recurrence
• Need for repeated treatments
• Discomfort
Skin Preparation and Application

- Acetone scrubs
- ALA application
Skin preparation

- Gentle curettage
- Keratolytics, overnight occlusion
- Tape stripping, microdermabrasion
- Laser resurfacing
- Micro-needle technique
- More important when nBCC, BD and sBCC than AKs are treated
- Occlusion post application: standard practice in MAL rather than in ALA
Skin Ca Prevention
Opportunities for Innovation

“FIELD” THERAPEUTIC MODALITY WITH SELECTIVE TARGETING

- Medical: Treatment of AKs and NMSCA
- Aesthetic: Acne, warts, HS, photo-rejuvenation
Actinic Keratosis & Non Melanoma Skin Cancer

- **Actinic Keratosis (AKs):** Scaly growth induced by sunlight
- **US:** Second most common reason for clinic visit
- **Adults over 40:** Prevalence 40-60%
- **Transformation to skin cancer:** 0.1-10%
- **AKs may potentially evolve to SCC and BCC**

Criscione VD et al, Cancer 2009: 115:11:2523-2530
Solid Organ Transplant Recipients

- AKs and Bowen’s affect up to 40% of OTR by 5 years after transplant
- Average time to develop SCC after transplant less or equal to 9 years
- SCC to BCC ratio
 - General population: 1/4
 - OTR: 2/1 to 8/1
Solid Organ Transplant Recipients

- 40%: Aks in 5 years
- Malignancy:
 - Skin: 42%
 - Urogenital: 12%
 - Lymphoreticular: 7%
 - Gastrointestinal: 6%
 - Larynx 3%
 - Bronchus 3%
 - Others

% with Skin Ca

Years since transplant
Population-Based Standard Incidence Ratios of Skin Cancer in Transplant Patients

- Squamous Cell Carcinoma (10 fold increase in mortality)
- SCC of lip
- Basal Cell Carcinoma
- Melanoma

- 40-250-fold increase
- 20 to 38-fold increase
- 10-fold increase
- 1.6 to 3.4-fold increase

Jensen et al JAAD 1999;40:17
Hartevelt Transplantation 1990;49:506
Lindelof et al BJD 2000;143;513
Braathen et al JEADV 2012: 1063-66
Risk Factors for Skin Cancer

<table>
<thead>
<tr>
<th>Factors</th>
<th>General Population</th>
<th>Transplant Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing age</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Fair skin, light hair, light eyes</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Sun exposure</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>History of previous skin cancer</td>
<td>50% risk of 2nd cancer</td>
<td>>70% risk of 2nd skin cancer</td>
</tr>
</tbody>
</table>
Additional Risk Factors for Skin Cancer in Organ Transplant Patients

- Duration of immunosuppression
 - Longer = more

- Intensity of immunosuppression
 - Stronger = more

- HPV infection
 - Present = more

- CD4 lymphocytopenia and Th2 dominance
 - Lower = more

M Kosmidis et al. J Immunotherapy 2010 E pub
Recommended Dermatological Consult in SOTR

In all situations discuss management with transplant team

<table>
<thead>
<tr>
<th>Case</th>
<th>Frequency</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Transplant</td>
<td>Once</td>
<td>Hx, Education, Full skin exam, Report to Tx MD</td>
</tr>
<tr>
<td>Post Transplant</td>
<td>Yearly</td>
<td>Education, Full skin exam</td>
</tr>
<tr>
<td>In situ SCC</td>
<td>Q 6 mo</td>
<td>Education, Full skin examination, Field cancerization</td>
</tr>
<tr>
<td>(Aks, Bowen's)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early cutaneous</td>
<td>Q 4-6 mo</td>
<td>Education, Full skin exam, Field cancerization</td>
</tr>
<tr>
<td>carcinogenesis</td>
<td></td>
<td>Surgical removal of invasive SCC, Consider systemic retinoids, Notify Tx MD</td>
</tr>
<tr>
<td>1-4 NMSC/year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Christenson LJ et al, Derm Surg 2004: 30: 598
*Swiss Clinical Practice for skin cancer in organ transplant patients
Swiss Med WKLY 2009:139:29-30: 407*
Recommended Dermatological Consult in SOTR

<table>
<thead>
<tr>
<th>Case</th>
<th>Frequency</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>Q 2-4 mo</td>
<td>Education</td>
</tr>
<tr>
<td>cutaneous carcinogenesis</td>
<td></td>
<td>Full skin examination</td>
</tr>
<tr>
<td>5-10 NMSC/year</td>
<td></td>
<td>Field cancerization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgical removal of invasive SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiate systemic retinoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact Tx MD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommend reduced immunosuppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider switching to mTOR inhibitors</td>
</tr>
<tr>
<td>Severe</td>
<td>Q 1-3 mo</td>
<td>Education</td>
</tr>
<tr>
<td>cutaneous carcinogenesis</td>
<td></td>
<td>Full skin examination</td>
</tr>
<tr>
<td>>10 NMSC/year</td>
<td></td>
<td>Field cancerization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgical removal of invasive SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiate systemic retinoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact Tx MD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommend reduced immunosuppression</td>
</tr>
</tbody>
</table>
ALA-PDT in AKs

- Clearance 65-90% with one session
- Sessions are repeated q 4 weeks with ALA or 3 months with MAL
- 2-3 sessions may lead to complete clearance
- One year clearance 80% following ALA-PDT x2 sessions and 63-69% single session
- Cryotherapy may lead to comparable results
PDT for AKs:

- Efficacy reduced 10% on extremities vs face and scalp lesions—less thick lesions
- Less effective than cryotherapy

 Br J Dermatol 2008; 158: 994-999

- ALA PDT: Similar or better efficacy comparing to imiquimod (moderate thickness AKs: 58% vs 37% thin AKs 72%)

 JEADV 2009;23:1061-1065

- BF-200 ALA more efficacious with 1-2 sessions: 83-90% clearance
 Br J Dermatol 2012;166:137-146

- Occlusion for ALA-PDT in upper extremities: higher efficacy
 JDD 2012;11:12: 55-61

- Patients favor PDT due to shorter course of treatment and excellent cosmesis
 Br J Dermatol 2011;164:429-433
PDT: Safe and efficient photo-chemoprevention

- ALA PDT did not affect SCC but reduced the reappearance of Aks in 2 year f/u
 - J Invest Dermatol 2006: 126: 569
- ALA-PDT x 2 (1 wk apart) significant preventive potential in AK recurrence especially in first 6 months
 - BJD 2010: 162: 171
- SOTR may benefit out of MAL- PDT session, achieving 12 month clearance 62% vs 35% in controls
 - Acta Derm Venereol 2006; 86: 25
- Cyclic ALA PDT every 4-8 weeks x 2 years resulted in 79% reduction and 95% reduction of SCCs in 12 and 24 mo f/u
 - Derm Surg 2010: 36: 652
- ALA-PDT is effective in preventing Aks and NMSCA
 - JDD 2012: 11: 593
- Field therapies play significant role in NMSCA prevention
Bowen’s Disease

- ALA and MAL PDT: Effective for lesional areas up to 3 cm
- MAL-PDT: 2 sessions, clearance up to 96%, one year recurrence as in conventional therapies (cl 68-71%)

- Digital, subungual and nipple BD, penile intraepithelial neoplasia (PIN)

 BJD 2008;159:1245-1266

- Areas at high risk for NMSCA and poor healing
- **Not the treatment of choice for invasive SCC**
European protocols

MAL-PDT has been equivalent to surgery for sBCC but inferior to surgery for nBCC *JEADV* 2008; 22:1302-1311

ALA-PDT for sBCC: 87% vs nBCC:53% clearance: 12 mo study review
 — *Cancer* 1997;79:2282-2308

MAL-PDT, 2 sessions one week apart: 92-97% clearance at 3 months then repeat 2nd cycle therapy as indicated;
 — 9% recurrence and 22% of responding lesions recurred in 5 years

Not recommended treatment for micro-invasive and nodular invasive BCC
nBCC – What’s New

• Tumors need to be approached based on morphology and depth
• BF-200 ALA has been effective in clearing nodular BCCs of <1 mm as much as MAL PDT
• BF-200 ALA has statistically significant higher efficacy in eradicating nodular BCCs 1-2 mm thickness than MAL PDT (3 mo f/U, non aggressive BCCS)

Courtesy of Biofrontera
Optimizing and potentiating PDT

Clinical practice: Applications

- Imiquimod
- 5-FU
- Chemical Peels
- Fractional Photothermolysis
- Daylight PDT

Basic Science

- Vitamin D: Sato et al., JID 2007, 127, 925
“Intensified” PDT

- AK pretreatment with 5-FU followed by ALA PDT: Intensified PDT achieves better and longer lasting results than monotherapy
- Sequential ALA-PDT followed by topical imiquimod twice weekly for 16 weeks: combination therapy significantly more effective in AK eradication vs PDT alone
- Sequential chemical peels followed by ALA-PDT
 - Intensifying PDT (Studies directed by Dr. N Konnikov, IACD 2012)
Protocol: Sequential 5 FU x 10ds and PDT x 1

- Multiple Actinic Keratosis
- Fair skin type, >60 yo
- Recurrent Aks, H/o UV exposure
- High risk NMSC

Protocol: 5 FU x 2 weeks followed by ALA-PDT
N: 7, Immunosuppressed 2

Before treatment
Sequential 5-FU and ALA-PDT

Skin Med Jan 2013; 11;(1):54-8

S/P
5-FU

12 mo
Post PDT

1 month post
AK Reduction: 5-FU-ALA PDT vs PDT (N=19)
Topical Methods to Intensify PDT in AK/NMSCA treatment

- Imiquimod
- 5-Fluorouracil
- Diclofenac
- Ingenol Mebutate
- Topical Retinoids
- Chemical Peels
- Lasers
- Cryotherapy
- Electrosurgery
- Curettage
- Surgery
- Radiotherapy
- Occlusion
- Vitamin D
- Methotrexate
Combination Field Therapies

- **Fractional Photothermolysis and MAL-PDT**
 - Fraxel SR, 2 sessions, 3 weeks apart followed by MAL-PDT
 - JDD 2007; Aug 6(8):818

- **Fractional Photothermolysis:**
 - 13.8 and 7.3 fold higher PPIX fluorescence following continuous and fractional ablation respectively
 - Experimental Dermatology 2010; 19: 806

- **Ablative Fraxel Laser Resurfacing intensifying MAL-PDT**
 - BJD 2012; 166:1262
PDT and Photorejuvenation

- Safe and useful tool
- Sallowness, fine wrinkling, mottled hyperpigmentation, telangiectasia
- Epidermal /dermal rejuvenation
 - Increase of Pro collagen I and III (max 30 days), TGF-b, epidermal proliferation and Ki67, thickening of epidermis (max 1 mo), IL-1, CK 16 (2 d),
 - Decrease of MMPs -1,-3, -12 (1 mo), P53, solar elastosis - mainly after 2 sessions
- Well tolerated
- Follow up pre/post summer months
- Equivalent to medium depth chemical peel
 - Skin Therapy Letter.com June 2012
Medical and Aesthetic Dermatology

- Acne Vulgaris
 - ALA is selectively absorbed by the sebaceous glands
 - ALA-PDT targets acne inflammatory lesions
 - Effective: longer light wavelengths
 - Uncomfortable

JID 2000;115:183-192
PDT in Acne Vulgaris

- ALA incubation: 1-4 hours
- Occlusion
- Activation with Blu U, PDL, IPLs, LEDs
- Red light more likely to promote sebaceous gland destruction
- Complete clearance is achieved after 2-3 sessions
- Discomfort during PDT
Results

- Phototoxic responses of erythema, edema, scaling/peeling along with pruritus are prominent on 0-6 days in both modalities.
- Overlapping or second passing in PDL facilitates faster resolution of inflammatory acne evident in 1 week post treatment.
Results

- No residual scarring or dyspigmentation observed on both modalities
- Application of Hydroquinone along with sunscreen prior to and following treatment may facilitate good cosmetic outcomes even in skin types IV-V
The Role of Photodynamic Therapy in Acne: An Evidence-Based Review.

Boen M¹, Brownell J², Patel P², Tsoukas MM³.

Author information
1 Department of Dermatology, University of Illinois at Chicago, 808 S. Wood St., Suite 380, Chicago, IL, 60612, USA. mboen@uic.edu.
2 College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Room 130, Chicago, IL, 60612, USA.
3 Department of Dermatology, University of Illinois at Chicago, 808 S. Wood St., Suite 380, Chicago, IL, 60612, USA. tsoukasmm@uic.edu.

- Systematic Review
- 273 Publications
- Excluded: Reviews, in vitro trials, non English articles
- Included 69 clinical trials, two retrospective studies, four case reports
- Oxford Center for Evidence Based Medicine level of evidence (LOE)
Level of Evidence 1 Clinical Trials for Photodynamic Therapy for Acne

High quality, randomized, controlled (including split face) with little or no loss to follow up, large study population, significant effect size

<table>
<thead>
<tr>
<th>Author</th>
<th>Acne severity</th>
<th>Location</th>
<th>Photosensitizer</th>
<th>Light source</th>
<th>Number of patients</th>
<th>Duration</th>
<th>Efficacy</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yin 2010 [15]</td>
<td>Moderate to severe</td>
<td>Face</td>
<td>ALA at 5, 10, 15, or 20%</td>
<td>Red light</td>
<td>180 (45 in each group, split face control)</td>
<td>4 treatments every 10 days</td>
<td>Significant reduction in acne score at all time points in all groups (P<0.05). Intergroup comparisons all statistically significant (p<0.05) with increasing concentration, besides between 15% and 20% (p=0.148)</td>
<td>10 pts had intolerable pain at 20% concentration. Hyperpigmentation more frequent in 15, 20% groups. One patient in 20% group with severe blistering.</td>
</tr>
<tr>
<td>Yang 2013 [78]</td>
<td>Acne conglobata</td>
<td>Face</td>
<td>5% ALA</td>
<td>Red light</td>
<td>75 (40 control)</td>
<td>3 treatments occurring every 10 days</td>
<td>Treatment group had statistically significantly higher cure rate (87.5% vs 62.86%, p<0.01) and response rate (100% vs 91.43%, p<0.005) than control</td>
<td>21.88% of patients in treatment group reported mild to moderate erythema and edema; 15.63% reported severe erythema and edema</td>
</tr>
<tr>
<td>Chen 2015 [70]</td>
<td>Moderate to severe</td>
<td>Face</td>
<td>5% ALA</td>
<td>Infrared light</td>
<td>50 (25 control)</td>
<td>3 treatments every week</td>
<td>Total effective rate was 83.3% at 6 weeks, statistically significant over control</td>
<td>7 patients endorsed burning, pain, erythema with treatment. 3 had transient hyperpigmentation. 2 had acute acneiform lesions that resolved</td>
</tr>
<tr>
<td>Study</td>
<td>Severe/Moderate/Variable</td>
<td>Location</td>
<td>Photodynamic agent</td>
<td>Light source</td>
<td>Application</td>
<td>Treatment</td>
<td>Findings</td>
<td>Adverse effects</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Horfelt 2006 [79]</td>
<td>Moderate</td>
<td>Face</td>
<td>160mg/g MAL</td>
<td>Red light</td>
<td>30 (split faced control)</td>
<td>2 treatments, 2 weeks apart</td>
<td>Median reduction of 54% in the PDT group vs 20% reduction in control group</td>
<td>70% had some adverse effect in PDT group, pain, erythema, swelling most common; all mild to moderate in severity.</td>
</tr>
<tr>
<td>Pariser 2016 [18]</td>
<td>Severe</td>
<td>Face</td>
<td>80 mg/g MAL-</td>
<td>Red light</td>
<td>153 (53 control)</td>
<td>4 treatments every 2 weeks</td>
<td>MAL significantly larger decrease in inflammatory lesion counts than control (-15.6 vs -7.8, p<0.05); no significant difference in non-inflammatory lesions.</td>
<td>Pain and erythema similar between groups</td>
</tr>
<tr>
<td>Moftah 2016 [21]</td>
<td>Variable</td>
<td>Trunk</td>
<td>Liposomal methylene blue gel</td>
<td>IPL</td>
<td>35 (split backed control)</td>
<td>1 treatment</td>
<td>PDT group had statistically significant improvement in inflammatory lesion count when compared to control (56.4% vs 34.1% reduction, p<0.005)</td>
<td>More pain in PDT group than in control (mean reported severity 7.8 vs 4.64, respectively); photosensitizer caused staining, pruritus, desquamation</td>
</tr>
<tr>
<td>Kwon 2016 [52]</td>
<td>Variable</td>
<td>Face</td>
<td>1.5% 3-butenyl ALA</td>
<td>Daylight</td>
<td>46 (23 control)</td>
<td>Gel applied every other day for 12 weeks</td>
<td>Decrease in inflammatory and non-inflammatory counts in treatment group were 58.0% (p<0.05) and 34.1% (p<0.05), respectively</td>
<td>5 patients reported erythema, pain, and dryness in treatment group</td>
</tr>
</tbody>
</table>
PDT-Acne: Algorithm
PDT reaction management

<table>
<thead>
<tr>
<th>Before</th>
<th>Post 5-FU</th>
<th>Post PDT</th>
<th>3 Days</th>
<th>1 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool mist / Ice</td>
<td>Topical Mupirocin 2%</td>
<td></td>
<td>Systemic antibiotics</td>
<td></td>
</tr>
<tr>
<td>TAC 01%</td>
<td>Hydroquinone</td>
<td></td>
<td>Systemic antivirals</td>
<td></td>
</tr>
<tr>
<td>Pain control</td>
<td>Moisturization/SPF</td>
<td></td>
<td>Specialty referral</td>
<td></td>
</tr>
</tbody>
</table>
Pain management

- Important Factors:
 - Number, size, anatomic location of lesions
 - Monitoring: Visual Analog Scale (VAS)
- The redder the area, the more pain experienced and the better the treatment outcome
- Ice, cool air, cool mist during and post PDT
- Topical capsaicin 0.1% 3-4 days prior to PDT
 - Sandberg et al, Acta Derm Venereol 2006;86: 404-408
- Nerve blocks
Incorporating PDT to practice

- Easy to perform / no additional staff required
- Training: simple, still needs to be very thorough
- Flexibility in light source application
- No significant space requirements
- Patient education/consultation: pre and post care
Incorporating PDT to practice

- AKs easier to approach than acne
- Follow up periodically if severe AKs and photodamage, history of NMSCA, Bowen’s Disease and chronic immunosuppression
 - Follow ups: 3, 6, 12 months
- In sunny periods may schedule patients in afternoon
- Cost and reimbursement
 - Light source
 - Pre authorization contacting insurance, if indicated