Fundamentals: Instrumentation, Scar Type and Skin Type

Paul M. Friedman, M.D.
Director, Dermatology & Laser Surgery Center
Clinical Assistant Professor
University of Texas Medical School, Houston, TX
Clinical Assistant Professor
Weill Medical College of Cornell University,
The Methodist Hospital, Houston, TX

Options for Cutaneous Scarring

- 585-nm or 595-nm pulsed dye laser (PDL)
- 532-nm potassium titanyl phosphate lasers (KTP)
 - Intense pulsed light (alternative)
- 1,064/1,320 Nd:YAG, 1,450-nm diode
- Non-ablative fractional resurfacing (NAFR)
- Bipolar fractional radiofrequency microneedling (Insulated)
- Picosecond lasers with diffraction array or hologram
- Ablative fractional resurfacing (AFR)
- Laser-assisted drug delivery (LADD): AFL + 5-FU +/- TAC
- Conventional CO2/Er:YAG resurfacing
- Non-ablative fractional resurfacing (NAFR)
- Bipolar fractional radiofrequency microneedling (Insulated)
- Picosecond lasers with diffraction array or hologram

Laser Treatment of Scars

- Hypertrophic / Erythematous
- Atrophic
- Hyperpigmented
- Hypopigmented
- Surgical
- Burn or Traumatic

Laser Treatment of Erythematous Scars

- Low fluence (4 to 5 J/cm²), short pulse (45ns), large spot size 10-12mm, 30/30 DCD
 - May be initiated within 2-3 weeks of injury
- Treatment intervals of 4-6 weeks
- Easily combined with intralesional corticosteroids or antimetabolites if hypertrophy present

Disclosures

- Advisory Board
 - Allergan, Inc.
 - Solta Medical
 - Syneron-Candela
- Speakers Bureau
 - Allergan, Inc.
- Research Grant
 - Sienna Biopharmaceuticals, Inc.

References:

Benefits of Intralesional 5-Fluorouracil for Hypertrophic Scars

- Improve scar softness and pliability
- Reduce scar height
- Improve scar color
- Enhanced efficacy without side-effects associated with higher concentration TAC
- Easily combined with other modalities (laser)

Manuscript W. Fitzpatrick RE. Arch Dermatol. 2002 Sep; 138(9):1409-55

595-nm LPDL

Traumatic Scar

After 3 Treatments

595-nm LPDL + NAFR + IL TAC/5-FU

Hypertrophic Scar

1-month after breast augmentation. 1-year after completing treatment.

595-nm PDL +1450-nm Diode Laser

Hypertrophic Scar

After

Laser Scar Revision

Scar Type

- Hypertrophic / Erythematous
- Atrophic
- Hyperpigmented
- Hypopigmented
- Surgical
- Burn or Traumatic

Treatment of Atrophic Acne Scars

- Multi-modality approach achieves the best outcome
 - Filler injections for atrophic, distensible scars
 - Subcision for release of tethered scars
 - Punch elevations, punch excision, cross technique for ice pick scars
Lasers Options For Flat/Atrophic Scarring

- 595-nm Pulsed dye laser (PDL)
- Infrared (1,064/1,320 Nd:YAG, 1,450 nm diode)
- Non-ablative fractional resurfacing (NAFR)
 - ~25-50% improvement after 5 treatment sessions.
- Ablative fractional resurfacing (AFR)
 - ~50-75% improvement after 2-3 treatment sessions.
- Conventional CO2/Er:YAG resurfacing

Non-ablative Fractional Resurfacing (NAFR)

- Intact stratum corneum
- Thousands of microscopic wounds completely surrounded by viable tissue for rapid healing
- Immediate and delayed therapeutic results
 - Epidermal and dermal coagulation for resurfacing
 - Collagen denaturation for deep remodeling up to 1400µm
- Safe on neck, trunk, extremities and in darker skin types

Non-ablative Fractional Photothermolysis

- Treatment density (coverage) - 5% to 40% coverage
- Lower density in darker skin types
- Consider longer intervals between treatment sessions

Non-ablative Fractional Laser Treatment of Atrophic Scars

- Acne Scars and PIE
- After 6 treatments 20x30 ml, Tx level 8

Acne Scars and PIE After 6 treatments 20x30 ml, Tx level 8

NAFR

1 Month after 4 treatments
40 mJ, Tx level 5-7

Ablative Fractional Resurfacing

2 years after 1 treatment

Atrophic, Acne Scars

Ablative Fractional Resurfacing

Atrophic Scar
4 Months After
1 Treatment

Non-Ablative Fractional Photothermolysis

Striae Rubra
After 3 treatments
1550-nm, 25-70 mJ, tx level 8-10

Other Non-ablative Fractional Approaches for Atrophic Scars

- Picosecond lasers with diffraction array or hologram
- High intensity focused radiofrequency
- Microneedling +/- PRP

Laser Scar Revision
Scar Type
- Hypertrophic / Erythematous
- Atrophic
- Hyperpigmented
- Hypopigmented
- Surgical
- Burn or Traumatic

Hyperpigmented and Hypopigmented Scars
Hyperpigmented Scars:
- QS laser (pigment or tattoo)
- Picosecond laser (pigment or tattoo)
- 1927-nm Fractional Low-Power Diode
- 1550 or 1927-nm NAFR

Hypopigmented Scars:
- NAFR
- AFR

1064-nm QS Nd:YAG Laser
Traumatic Tattoo
After

Fractional Photothermolysis
Postinflammatory Hyperpigmentation
7 months after 3 treatments
1550-nm, 15 mJ, Tx level 6

1927-nm Fractional Low-Power Diode
Postinflammatory Hyperpigmentation
4 weeks after 3 treatments

Atrophic, Hypopigmented Scars

Non-ablative Fractional Photothermolysis

After 4 treatments

1550-nm, 20mJ, Tx Level 7

1550-nm, 20mJ, Tx Level 7

Non-ablative Fractional Photothermolysis

After 3 sessions

1550-nm, 4.50mJ, 7%-23% coverage

Ablative Fractional Photothermolysis

After 9/24/2015

Laser Scar Revision

Scar Type

• Hypertrophic / Erythematous
• Atrophic
• Hyperpigmented
• Hypopigmented
• Surgical
• Burn or Traumatic

Fractional Photothermolysis

After 3 treatments

1550-nm, 40 mL, tx level 9-10

1,550-nm Non-ablative Laser for Facial Surgical Scars

Facial Surgical Scars 2-weeks After 1 Treatment 1550-nm, 8mJ, density of 2000 MTZ/cm²

Prevention of Thyroidectomy Scar Using a New 1,550-nm Fractional Erbium-Glass Laser

2-3 weeks after surgery (Pre-treatment) 5 months after 4 treatments

Laser Scar Revision

- Mature hypertrophic, surgical scars
- Two arms: 10 subjects each
 - High density: 40 mJ/mb, 26% coverage
 - Low density: 40 mJ/mb, 14% coverage
 - Total 4 treatment sessions, every 2 weeks
- Low-density treatment as effective as high density
- Younger scars responded better

NAFR for Abdominoplasty Scar

- 6-months after 4 treatment sessions with 1550-nm, 20-30mj, 32% density starting 1-month after surgery

595-nm LPDL Early Burn Scar

- Early Burn Scar
- After

Fundamentals: Instrumentation, Scar Type and Skin Type
Paul M. Friedman, MD
February 17, 2018
595-nm Long Pulsed-Dye Laser and 1450-nm diode laser

After 11 Treatments

595-nm LPDL + IL TAC

Burn Scar After

Burn Scars
1,550-nm NAFR

- 5 sessions at 4-week intervals
- 40-70 mJ/pulse, density 6-13*
- 90% had overall improvement
- 60% had moderate to excellent improvement
- Improved skin texture: 90%
- Improved dyschromia: 80%
- Improved hypertrophy/atrophy: 80%

1550-nm NAFR

Burn Scar After

1550-nm NAFR

Atrophic, Hypopigmented Burn Scar After

Traumatic Surgical Scar After 2 Treatments 1550-nm, 40 mJ, Tx level 10

595-nm PDL and Ablative Fractional Photothermolysis

Before

3-months After 1 Treatment

Fractional Ablative Lasers and Topical Drugs

- Fast uptake of many topical agents - large or small molecules
- Depth of uptake ≈ depth of laser holes (0.5-1.5 mm)
- Massaging made no difference
- Possible drug depot in each channel
- Drug uptake is strongly enhanced for ~3 days
- Future applications will include drug-device combinations

Laser Scar Revision: Summary

Pulsed Dye Laser (585-595-nm)
 - Hypertrophic & Erythematous Scars
 - Pre-Scars
 - Early striae

Fractional (ablative and non-ablative)
 - Atrophic scars
 - Burn or traumatic scars
 - Match depth laser to depth of scar with low density (optical coherence tomography)
 - Laser-assisted drug delivery
 - Early or late striae

Laser Scar Revision Summary

- Several laser techniques are available for the safe and effective treatment of various types of scars.
- Individualize and combine devices to customize the treatment to the characteristics and depth of the scar.
- Although long-standing scars will respond to laser therapy, new scars are more amenable to treatment; therefore, prompt treatment is recommended.
- Debate remains on the best timing for treatment initiation.

Thank you!

drpaul@dermlasersurgery.com
@drpaulmfriedman