“Brown spots on Babies”

Jonathan A. Dyer, MD
Associate Professor
Departments of Dermatology and Child Health
University of Missouri

Objectives
- Recognize common hyperpigmented skin lesions in infants
- Discuss new findings and practical pearls pertaining to pigmented lesions
- Manage hyperpigmented lesions in infants

“Brown spots on Babies”

Dirt
Marker
Food
Chocolate
Excrement

Hyperpigmented lesions
- Café au lait macule (CALM)
- Becker’s nevi
- Patterned dyschromia/pigmentary mosaicism
- Nevi
 - Congenital melanocytic nevi (CMN)
 - Speckled lentiginous nevi/ nevus spilus
- Mastocytoma

DISCLOSURES
Investigator: Scioderm, Allergan
Café au lait macules (CALM)

• “Coffee with milk”
• Congenital/ acquired
• Isolated lesions very common
 – ~20-25%
• Sporadic may fade in adults
• Histo: increased melanin of MC and KC, macromelanosomes*

Neurofibromatosis (NF)

• “Coast of California”
• May develop new lesions after age 6
• Don’t fade with time

Table 2

<table>
<thead>
<tr>
<th>Symptoma</th>
<th>Clinical features</th>
<th>Genes or Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurofibromatosis type 1</td>
<td>Multiple café-au-lait, skin-fold freckling, lisch nodules, optic pathway glioma, skeletal dysplasia, stigmata and plexiform neurofibroma, microscopic cafe-au-lait spots, meningioma, Schwartz-Jampel syndrome, congenital pseudarthrosis of tibia, von Recklinghausen disease, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>NF1</td>
</tr>
<tr>
<td>Neurofibromatosis type 2</td>
<td>Multiple café-au-lait, absence of café au lait spots, juvenile xanthogranuloma, neurofibromatosis, neurofibromatosis, von Recklinghausen disease, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>NF2</td>
</tr>
<tr>
<td>Multiple café-au-lait without other stigmata of NF1</td>
<td>Multiple café-au-lait without other stigmata of NF1</td>
<td>1</td>
</tr>
<tr>
<td>Multiple café-au-lait with at least one other developmental defect</td>
<td>Multiple café-au-lait with at least one other developmental defect</td>
<td>SF3601</td>
</tr>
<tr>
<td>Segmental café-au-lait</td>
<td>Segmental café-au-lait</td>
<td>SF3611</td>
</tr>
<tr>
<td>Multiple café-au-lait, adenoma sebaceum, polyposis, multiple epidermal naevi, multiple plexiform neurofibromas, adolescence and neurofibromatosis type 1 (NF1).</td>
<td>Multiple café-au-lait, adenoma sebaceum, polyposis, multiple epidermal naevi, multiple plexiform neurofibromas, adolescence and neurofibromatosis type 1 (NF1).</td>
<td>SF3621</td>
</tr>
<tr>
<td>Multiple café-au-lait, non-streamline superstitious naevi, neurofibromatosis, leptomeningeal angiofibroma, neurofibromatosis type 2 (NF2).</td>
<td>Multiple café-au-lait, non-streamline superstitious naevi, neurofibromatosis, leptomeningeal angiofibroma, neurofibromatosis type 2 (NF2).</td>
<td>SF3631</td>
</tr>
<tr>
<td>Multiple café-au-lait, neurofibromatosis, mental retardation, shunt states, joint anomalies</td>
<td>Multiple café-au-lait, neurofibromatosis, mental retardation, shunt states, joint anomalies</td>
<td>SF3641</td>
</tr>
<tr>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>SF3651</td>
</tr>
<tr>
<td>Lisch nodules; café-au-lait spots; neurofibromatosis type 1 (NF1).</td>
<td>Lisch nodules; café-au-lait spots; neurofibromatosis type 1 (NF1).</td>
<td>SF3661</td>
</tr>
<tr>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>SF3671</td>
</tr>
<tr>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>SF3681</td>
</tr>
<tr>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>Café-au-lait, café-con, lichenoid, cafe-au-lait naevi, psoriasis, neurofibromatosis, phemiscranial anomalies, osteoporosis, cranial dysostosis, acanthosis nigricans, and neurofibromatosis type 1 (NF1).</td>
<td>SF3691</td>
</tr>
</tbody>
</table>

* Macromelanosomes are melanosome-sized brown melanosomes.
Legius syndrome

- SPRED1

McCune-Albright syndrome

- Fibrous dysplasia; CALM; precocious puberty
- GNAS
 - Mosaicism for somatic activating mutations
 - Alpha subunit of stimulatory G-protein
- Incidence: 1/100,000-1x10^6
 - Diagnosis by 5yo

McCune-Albright syndrome

- Polyostotic fibrous dysplasia
 - Scoliosis
- Precocious puberty
 - Vaginal spotting/bleeding
 - Testicular/ penis enlargement
 - Precocious sexual behaviour
- Variable hyperfunctional endocrinopathies
 - Cushing syndrome

Pigmentary Mosaicism/ Patterned Dyschromia

- Heterogeneous
 - Hypo and/or hyperpigmented
 - May follow Blaschko’s lines
- Associated clinical abnormalities in 30% (literature)
 - Esp. CNS, eye, bone
 - Nehal et al. Arch Derm 1996; 132:1167
 - Likely an overestimate

Congenital melanocytic nevi

- 2-3% of neonates
- Large CMN rarer
 - 1: 20-50,000 live births
- Tardive or late onset CMN
 - Onset <3 yo
- Smaller lesions – BRAF V600E
 - Only MAPK activation
- Large/giant CMN – NRAS
 - MAPK and PI3K/AKT activation
 - PI3K/AKT – promotes MC survival/ directional migration
 - Rapamycin???
Congenital Melanocytic Nevi (CMN)

- Largest expected adult diameter
 - Small <1.5cm
 - Medium 1.5-10cm
 - Large
 - L1 >20-30
 - L2 >30-40

- Giant
 - G1 40-60
 - G2 >60

How to predict adult size?
- CMN increase factors:
 - Head – 1.7x
 - Legs – 3.3x
 - Other – 2.8x

Satellite nevi
- S1 <20
- S2 20-60
- S3 >60

Congenital melanocytic nevi

Evolution
- Scalp CMN may lighten/ regress over time
- Small-medium CMN
 - Melanoma risk – after puberty
 - <1% over lifetime
 - Background risk in population is 2%
- Large/Giant CMN
 - <5%; 50% in first 5 yrs; >40cm 75%

Which CMN patients are at risk for neurocutaneous melanosis?
- Numerous CMN
 - 66% large/giant primary lesion with many satellites
 - >20 satellites = 5x higher NCM risk
 - CMN >40cm final size in posterior axial locations
 - 33% numerous small/medium CMN (>10)

Speckled lentiginous nevi

- AKA; Nevus spilus; CMN subtype
 - Incidence: 2-3%
- CALM-like background in childhood
 - Neviod papules appearing with time
 - Lentigenes; nevi; Spitz; blue nevi

Genetics
- Conventional SpLN
 - HRAS
- Large CMN like SpLN
 - NRAS
- Melanoma risk
 - Likely proportionate to size
Pediatric melanoma

- 0.5% of melanoma occurs <20 yo
 - <0.05% in <10 yo
 - Amelanotic
 - Nodular
 - PG; keloid; wart
- Prepubertal melanoma incidence stable
- Adolescent/adult incidence rising

Mastocytosis

- Clonal mast cell expansion
 - Activating KIT mutations
- Cutaneous
 - Onset typically <6 mo
 - Occ. Congenital
 - Typically gradually regress
 - Puberty
- Systemic
 - Adult

Mastocytoma

- Yellow-tan-brown
 - Plaques
- Darier’s sign
 - Scalp

Mastocytosis

- Childhood-onset MPCM
 - “Urticaria pigmentosa”
 - Heterogeneous lesions

Mastocytosis

- Large maculopapular lesions:
 - lower tryptase levels
 - Low anaphylaxis risk
 - shorter disease duration
 - earlier disease onset
 - spontaneous resolution
• Large maculopapular lesions:
 - lower tryptase levels
 - Low anaphylaxis risk
 - shorter disease duration
 - earlier disease onset
 - spontaneous resolution

Thank you for attending!

Please contact me should you have any questions.

Jonathan A. Dyer, MD
Associate Professor of Dermatology and Child Health
University of Missouri - Columbia
1 Hospital Drive, Room MA111
Columbia, MO. 65212
phone: 573-882-8578 fax: 573-884-5947
E-mail: DyerJA@health.missouri.edu