Antibiotics as Immunomodulators

Ted Rosen, MD
Baylor College of Medicine
Houston, Texas
DISCLOSURE OF RELATIONSHIPS WITH INDUSTRY

Ted Rosen, MD
F120 Treating Tumors and Inflammatory Skin Diseases with Immunomodulators and Biologics

DISCLOSURES
I do not have any relevant relationships with industry.
Janus: The God of Two Faces
Antibiotics = Immunosomodulators?

- Major property of molecule: Kill susceptible microbes
- Ancillary property of molecule: Immunomodulation (example)
- Drug administered to take advantage of ancillary property
- Also...some conditions are suspected of being infectious in nature, although not proven. Therefore, hedging bets!
 - Rosacea
 - Sarcoidosis
Antibiotics = Immunomodulators?

- Major property of molecule
- Ancillary property of molecule
- *Drug administered to take advantage of ancillary property*
- Also….some conditions are suspected of being infectious in nature, although not proven. Therefore, hedging bets!
 - Rosacea: Demodex or bacteria living within Demodex
 - Sarcoidosis: Atypical (Environmental) mycobacteria
Rosacea Pathogenesis

Pathogenesis of Rosacea

Immune Detection Dysfunction Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS
- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increase in TLR2 on Keratinocytes
(Augmented “Danger” Recognition)

Elevated Cathelicidin Precursor
(hCAP18)

Serine Protease
(Kallikrein-5 [KLK-5])

Pro-Serine Protease
(Pro-KLK-5)

Increased LL-37 + Variant Peptides

ROSACEA
Inflammation / Neurovascular Effects / Vascular Changes / Fixed Physical Changes in Cutaneous Vasculature

MMP

*TLR2
Toll-like receptor-2*

References:
- Int J Mol Sci. 2016 Sep 15;17(9).E1562
TETRACYCLINE DERIVATIVES HAVE MULTIPLE ANTI-INFLAMMATORY PROPERTIES

Pharmacol Res 2011;63:130-45

↓ NO Production and Activity
↓ ROS
↓ MMPs
↓ Phospholipase A2
↓ Angiogenesis
↓ Granulomatous Inflammation
↓ Proinflammatory Cytokine release
↓ Cellular Migration, Proliferation
TETRACYCLINE DERIVATIVES HAVE MULTIPLE ANTI-INFLAMMATORY PROPERTIES

- ↓ NO Production and Activity
- ↓ Cellular Migration, Proliferation
- ↓ Proinflammatory Cytokine release
- ↓ Granulomatous Inflammation
- ↓ Angiogenesis
- ↓ Phospholipase A2
- ↓ ROS
- ↓ MMPs
Pathogenesis of Rosacea

Immune Detection Dysfunction
Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS

- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increase in TLR2 on Keratinocytes
(Augmented “Danger” Recognition)

Elevated Cathelicidin Precursor (hCAP18)

Serine Protease (Kallikrein-5 [KLK-5])

Pro-Serine Protease (Pro-KLK-5)

Increased LL-37 + Variant Peptides

ROSACEA
Inflammation / Neurovascular Effects / Vascular Changes / Fixed Physical Changes in Cutaneous Vasculature

TLR2
Toll-like receptor-2

*TLR2

MMP
Pro-Serine Protease

Tetracycline Drugs

Percent In-vitro inhibition of cutaneous collagenase (MMP-8) by Tetracycline Family

![Graph showing the inhibition of collagenase by different drugs at various concentrations.](image-url)
Percent In-vitro inhibition of cutaneous collagenase (MMP-8) by Tetracycline Family

Strongest inhibition of MMPs by Doxycycline
Pathogenesis of Rosacea

Immune Detection Dysfunction Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS
- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increased LL-37 + Variant Peptides

Elevated Cathelicidin Precursor (hCAP18)

Serine Protease (Kallikrein-5 [KLK-5])

Pro-Serine Protease (Pro-KLK-5)

Increase in TLR2 on Keratinocytes (Augmented “Danger” Recognition)

ROS

MMP

ROSACEA
- Inflammation / Neurovascular Effects / Vascular Changes / Fixed Physical Changes in Cutaneous Vasculature

*TLR2 Toll-like receptor-2

References

Br J Dermatol 2007;157:1124-31
How are ROS tied to Antibiotics?

• ROS are elevated in rosacea skin compared to normal

• Tetracycline family significantly reduces ROS

• There is a hierarchy to this property. Minocycline > Doxy > TCN
 - J Neurochem 2005;94:819-27

• Tetracyclines reduce ROS by....
 • Neutrophil inhibition
 • Direct scavaging of free radicals
 • Chemical reactions generating ROS specifically blocked (eg iNOS)
 • Pharmacol Res 2011;63:130-45
Pathogenesis of Rosacea

Immune Detection Dysfunction
Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS

- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

MMP

Increase in TLR2 on Keratinocytes (Augmented “Danger” Recognition)

- Elevated Cathelicidin Precursor (hCAP18)
- Serine Protease (Kallikrein-5 [KLK-5])
- Pro-Serine Protease (Pro-KLK-5)
- Increased LL-37 + Variant Peptides
- Doxy, Mino

ROSACEA

- Inflammation / Neurovascular Effects / Vascular Changes / Fixed Physical Changes in Cutaneous Vasculature

*TLR2
Toll-like receptor-2

References:

Br J Dermatol 2007;157:1124-31
Azithromycin and Rosacea?

- Clin Exp Dermatol 2011;36:674-76
- Arch Dermatol 2004;140:489-90
Azithromycin and Rosacea?

- Clin Exp Dermatol 2011;36:674-76
- Arch Dermatol 2004;140:489-90
Azithromycin as an immunomodulator

Int J Antimicrob Agents 2008;31:12-20

- Semi-synthetic analogue of erythromycin; Targets 23S ribosomal RNA
- Excellent tissue penetration, low toxicity, long half-life
- Rapid selective uptake in neutrophils, macrophages, fibroblasts
- Degranulation of neutrophils; Inhibits neutrophil chemotaxis
- Decreases expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-alfa)
- Decreases expression of pro-inflammatory transcription (NF-κβ)
- Decreases, selectively, matrix metalloproteinases (MMP-2,9)

J Pharmacol Exp Ther 2000;292:156-63
Eur J Pharmacol 2002;450:277-89
Biochem Biophys Res Commun 2006;350:977-82
Invest Ophthalmol Vis Sci 2010;51:5623-29
Molec Vis 2013;19:153-65
Azithromycin as an immunomodulator

Int J Antimicrob Agents 2008;31:12-20

• Semi-synthetic analogue of erythromycin; Targets 23S ribosomal RNA
• Excellent tissue penetration, low toxicity, long half-life
• Rapid selective uptake in neutrophils, macrophages, fibroblasts
• Degranulation of neutrophils; **Inhibits neutrophil chemotaxis**
• Decreases expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-alfa)
• Decreases expression of pro-inflammatory transcription (NF-κβ)
• Decreases, selectively, matrix metalloproteinases (MMP-2,9)

J Pharmacol Exp Ther 2000;292:156-63
Eur J Pharmacol 2002;450:277-89
Biochem Biophys Res Commun 2006;350:977-82
Invest Ophthalmol Vis Sci 2010;51:5623-29
Molec Vis 2013;19:153-65
Pathogenesis of Rosacea

Immune Detection Dysfunction Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS
- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increase in TLR2 on Keratinocytes (Augmented “Danger” Recognition)

- Elevated Cathelicidin Precursor (hCAP18)
- Serine Protease (Kallikrein-5 [KLK-5])
- Pro-Serine Protease (Pro-KLK-5)

Increased LL-37 + Variant Peptides

MMP

Chemotaxis

Vasodilation

Neoangiogenesis

*TLR2
Toll-like receptor-2

References:
Pathogenesis of Rosacea

Immune Detection Dysfunction
Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS

- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increase in TLR2 on Keratinocytes (Augmented “Danger” Recognition)

Elevated Cathelicidin Precursor (hCAP18)

Serine Protease (Kallikrein-5 [KLK-5])

Pro-Serine Protease (Pro-KLK-5)

Increased LL-37 + Variant Peptides

Azithromycin

- Chemotaxis
- Vasodilation
- Neoangiogenesis

Inflammation / Neurovascular Effects / Vascular Changes / Fixed Physical Changes

Increased LL-37 + Variant Peptides

Elevated Cathelicidin Precursor (hCAP18)

Serine Protease (Kallikrein-5 [KLK-5])

Pro-Serine Protease (Pro-KLK-5)

MMP

Heat
Wind
Trauma
UV exposure
Steroids
Demodex?
Microbes?
Other?

TLR2
Toll-like receptor-2

Topical Ivermectin 1% Cream
• Approved 12-23-2014
• QD treatment for rosacea
• Better than metronidazole 0.75%
• Compares favorably to azelaic acid 15%
• Killing Demodex? Bacteria in Demodex?
• OR…..is it anti-inflammatory?????
Ivermectin is Anti-inflammatory!

- Decreases expression of pro-inflammatory transcription (NF-κβ) in vitro
- Inhibits LPS-induced TNF-α, IL-1b and IL-6 in vitro and in vivo
- Reduces chemotaxis of neutrophils and lymphocytes in vivo
- Inhibits LPS-induced Nitric oxide and iNOS mRNA in vitro and in vivo
- Upregulates IL-10 (anti-inflammatory activity) in vitro
- Inhibits COX-2 activity and PGE2 production in vitro

Inflamm Res 2011;60:589-96
Int Immunopharmacol 2009;9:354-9
Inflamm Res 2008;57:524-9
Ivermectin is Anti-inflammatory!

- Decreases expression of pro-inflammatory transcription (NF-κB) in vitro
- Inhibits LPS-induced TNF-α, IL-1b and IL-6 in vitro and in vivo
- Reduces chemotaxis of neutrophils and lymphocytes in vivo
- Inhibits LPS-induced Nitric oxide and iNOS mRNA in vitro and in vivo
- Upregulates IL-10 (anti-inflammatory activity) in vitro
- Inhibits COX-2 activity and PGE2 production in vitro

Inflamm Res 2011;60:589-96
Int Immunopharmacol 2009;9:354-9
Inflamm Res 2008;57:524-9
Pathogenesis of Rosacea

Immune Detection Dysfunction Underscores Rosacea-affected and Rosacea-prone Facial Skin

TRIGGERS

- Heat
- Wind
- Trauma
- UV exposure
- Steroids
- Demodex?
- Microbes?
- Other?

Increase in TLR2 on Keratinocytes (Augmented "Danger" Recognition)

Elevated Cathelicidin Precursor (hCAP18)

Serine Protease (Kallikrein-5 [KLK-5])

Pro-Serine Protease (Pro-KLK-5)

Increased LL-37 + Variant Peptides

Ivermectin

MMP

Chemotaxis
Vasodilation
Neoangiogenesis

*TLR2
Toll-like receptor-2

[References]
Sarcoid: Novel Rx (“CLEAR”)

Eight weeks, Active (n=11) versus Placebo (n=11)

Concomitant:

- Levofloxacin 750mg Day 1, then 500mg/d
- Ethambutol 25mg/kg/d (maximum 1200mg/d)
- Azithromycin 500mg Day 1, then 250mg/d
- Rifampin 10mg/kg/d (maximum 300mg/d)

Active had > decrease (vrs increase) in target lesion size and severity
Sarcoid and the “CLEAR” Therapy

- **Levofloxacin**
 - Inhibits cellular phosphodiesterase, elevates cAMP
 - Reduces synthesis of IL-1β, IL-8, TNF-alfa by inhibiting NF-κβ
 - Lancet Infect Dis 2003;3:359-71

- **Ethambutol**
 - Apoptosis of activated lymphocytes
 - Antibiot Khimioter 2010;55:25-29

- **Azithromycin**
 - Reduces synthesis of IL-6, IL-8, TNF-alfa by inhibiting NF-κβ

- **Rifampin**
 - Inhibits TNF-alfa secretion
 - Enhances IL-10 secretion
 - J Chemother 2004;16:357-61

References:

- JAMA Dermatol 2013;149:1040-49
- Sarcoidosis Vasc Diffuse Lung Dis 2013;30:201-11
Sarcoid and the “CLEAR” Therapy

• **Levofloxacin**
 • Inhibits cellular phosphodiesterase, elevates cAMP
 • *Reduces synthesis* of IL-1β, IL-8, **TNF-alfa** by inhibiting NF-κβ
 • Lancet Infect Dis 2003;3:359-71

• **Ethambutol**
 • Apoptosis of activated lymphocytes
 • Antibiot Khimioter 2010;55:25-29

• **Azithromycin**
 • *Reduces synthesis* of IL-6, IL-8, **TNF-alfa** by inhibiting NF-κβ
 • J Chemother 2009;21:396-402

• **Rifampin**
 • **Inhibits TNF-alfa** secretion
 • Enhances IL-10 secretion
 • J Chemother 2004;16:357-61
Sarcoid and the “CLEAR” Therapy

• Levofloxacin
 • Inhibits cellular phosphodiesterase, elevates cAMP
 • Reduces synthesis of IL-1β, IL-8, TNF-alfa by inhibiting NF-κβ
 • Lancet Infect Dis 2003;3:359-71

• Ethambutol
 • Apoptosis of activated lymphocytes
 • Antibiot Khimioter 2010;55:25-29

• Azithromycin
 • Reduces synthesis of IL-6, IL-8, TNF-alfa by inhibiting NF-κβ
 • J Chemother 2009;21:396-402

• Rifampin
 • Inhibits TNF-alfa secretion
 • Enhances IL-10 secretion
 • J Chemother 2004;16:357-61
Sarcoidosis and Minocycline

<table>
<thead>
<tr>
<th>Reference</th>
<th>Responded?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA Dermatol 2013;149:758-60</td>
<td>20 of 27</td>
<td>Skin only</td>
</tr>
<tr>
<td>J Drugs Dermatol 2012;11:385-89</td>
<td>1 of 1</td>
<td>Hypopigmented</td>
</tr>
<tr>
<td>Clin Rheumatol 2008;27:1195-97</td>
<td>1 of 1</td>
<td>Ocular + Lung</td>
</tr>
<tr>
<td>Arch Ophthalmol 2007;125:705-09</td>
<td>1 of 1</td>
<td>Ocular + Skin</td>
</tr>
<tr>
<td>Arch Dermatol 2001;137:69-73</td>
<td>10 of 12</td>
<td>Skin only</td>
</tr>
</tbody>
</table>

Multiple mechanisms whereby minocycline might be anti-inflammatory in sarcoid (such as ↓TNF-alfa and others, it also directly inhibits granuloma formation). Arch Derm 1994;130:748-52
Sarcoidosis and Minocycline Monotherapy
Orofacial Granulomatosis

• Primary
 • Melkersson-Rosenthal Syndrome
 • Granulomatous cheilitis

• Secondary
 • Tuberculosis
 • Sarcoid
 • Crohn’s Disease
 • Solid Facial Edema
Orofacial Granulomatosis: Inflammatory Dis

- CD4+ Cellular infiltrate
- Increased Th1 cells
- Increased INF-γ, IL-12, TNF-α
Orofacial Granulomatosis: Antibiotic Rx
Is success due to anti-inflammatory activity?

- Minocycline
 - Dermatology. 1992;185:220

- Azithromycin and Roxithromycin
 - JAMA Dermatol. 2015;151: 219–220
Orofacial Granulomatosis: Antibiotic Rx
Is success due to anti-inflammatory activity?

Azithromycin 500mg QD x 3 days each week (3 rounds)
Orofacial Granulomatosis: Antibiotic Rx
Is success due to anti-inflammatory activity?

Azithromycin 500mg QD x 3 days each week (6 rounds)
I hope I have “unmasked” some antibiotic properties with which you might NOT have been so familiar!
Thanks for your attention!

- Ted Rosen, MD
- Professor of Dermatology
- Baylor College of Medicine
- Houston, Texas