Melasma: Where Do We Stand?

SPEAKERS

Pearl E. Grimes, M.D Session Chair
Ivonne Arellano Mendoza, M.D.
Seemal Desai, M.D.
Marta Rendon, M.D.
Boon Kee Goh, M.D.
Melasma: Where Do We Stand?

LEARNING OBJECTIVES

1. Succinctly review new data on pathogenesis of melasma.
2. Discuss treatment options including hydroquinone, and non-hydroquinone lightening agents, as well as new targets and agents for skin lightening.
3. Review resurfacing modalities, as well as discussing the risk/benefit ratios of each procedure.
Advances in the Pathogenesis of Melasma

Pearl E. Grimes, MD
Founder and Director
Vitiligo and Pigmentation Institute
of Southern California
pearlgrimesmd.com
And
Clinical Professor
Division of Dermatology
David Geffen School of Medicine
UCLA, Los Angeles, CA
DISCLOSURE

Dr. Grimes has performed clinical research and/or served as consultant for:

Allergan, Galderma, Astellas, SkinMedica, Altana, Inc., Novum, Procter & Gamble, Mary Kay, Merz Combe Inc, Obagi, Johnson & Johnson and Suneva.
Advances in the Pathogenesis of Melasma

Complex Disease

Phenotype/Photodamage

Multiple Players and Pathways

Therapeutic Implications

“LESS IS MORE”
Pathologies of Melasma: Where Do We Stand?

Melasma is a common acquired disorder of hyperpigmentation characterized by irregular light brown to dark brown patches of hyperpigmentation commonly affecting the face. The trunk and arms are also occasionally involved. Multiple studies have documented the negative impact of melasma on quality of life as it displays as a phenotype of photodamage. Moreover, new research has led to an increased understanding of the complex pathogenesis of this disorder. Key etiologic factors include a genetic predisposition, solar damage, barrier abnormalities, and unique sensitivities to hormonal changes including pregnancy, oral contraceptives, and hormone replacement therapy. Multiple studies document the role of melanocytes, keratinocytes, and dermal cells including fibroblasts and mast cells in melasma. Transcriptomic studies document upregulation of pigment genes, Wnt genes, and prostaglandins. There is also an increase in melanogenesis, lesional alpha-MSH, solar elastosis, dermal blood vessels, expression of VEGF, and mast cells. Recent studies display that there is altered barrier function in cells due to basement membrane damage, and an aberrant response to estrogen and progesterone. Moreover, studies now suggest that inflammatory mediators including nitric oxide play a role in this chronic disease. New technological and pharmacological advances have facilitated expansion of approaches for the prevention, diagnosis, and long term management of this difficult and challenging chronic pigmentary disorder. No cures have been developed as of yet. Evidence based studies suggest the best therapeutic outcomes are achieved with combination therapy or triple combination bleaching with hydroquinone, a steroid, and retinoids. Multiple new non-hydroquinone formulations are now available, and can be used in combination with
hydroquinone products in a rotational algorithm for therapeutic intervention. New treatments are needed to address the vascular component of melasma (see references).

References


Adalatkhah H, Sadeghi-Bazargani H. The first clinical experience on efficacy of topical flutamide on melasma compared with topical hydroquinone: a randomized clinical trial. Drug design, development and therapy. 2015;9:4219.


PEARL GRIMES M.D.


Rendon M, Dryer L. Investigator-Blinded, Single-Center Study to Evaluate the Efficacy and Tolerability of a 4% Hydroquinone Skin Care System Plus 0.02% Tretinoin Cream in Mild-to-Moderate Melasma and Photodamage. J Drugs Dermatol. 2016 Apr;15(4):466-475.


