Skin As An Immune Organ

Mark C. Udey, M.D., Ph.D.
Chief, Dermatology Branch
Deputy Director
Center for Cancer Research
National Cancer Institute
National Institutes of Health
I have no conflicts of interest to declare!
Take Home Messages

• The immune system evolved to protect complex organisms from infection

• Immune responses are organismal, but compartmentalized

• Skin has “specialized” immune functions because it is an interface organ

• There is an active dialogue between the environment and the skin immune system that influences immune function

• *In vivo* studies are critical

• We know a lot, but we are still learning

• New information is altering existing paradigms, and impacting on patient care
How Does the Skin Immune System Work (I)?

• Keeps pathogens out
 • Stratum corneum, cell-cell and cell-matrix adhesion

• Recognizes and responds to breaches in the barrier and other “stresses”
 • Pathogen-unrelated (proinflammatory cytokine production 2° barrier disruption)
 • Danger signals (Innate Immune System)

• Prevents systemic dissemination of invading organisms
 • Skin intrinsic participants (anti-microbial peptides/defensins and structural elements)
 • Extrinsic participants (complement, leukocytes)
How Does the Skin Immune System Work (II)?

• Eliminate pathogens from inoculation sites
 • Innate and Adaptive Immune Systems

• Minimize damage to host tissues
 • Responses should of limited duration (counter-regulatory mechanisms)
 • Distinguish between non-self and self

• Remember the encounter and prevent another occurrence or attenuate severity
 • Adaptive Immunity
 • Circulating Antibodies (IgG)
 • Memory T cells (CD4 and CD8)
Discrimination Between Non-self and Self

• Innate Immune System
 • Pathogen-associated molecular patterns (microbes)
 • Pattern recognition receptors (host cells)
 • Self recognition receptors (inhibitory natural killer receptors)

• Adaptive Immune System
 • Central tolerance - mediated by deletion of autoreactive T cells in the thymus
 • Positive selection - T cells must recognize peptide-MHC complexes in the thymus to survive
 • Peripheral tolerance - active process mediated by regulatory T cells (CD4+ CD25+ Foxp3+ T cells, IL-10, TGFβ) and that may involve “unactivated” dendritic cells
Skin Barrier Function

• Skin is a dynamic, responsive interface between organism and environment

• The physical barrier is determined by properties of epidermal keratinocytes

• The air-liquid interface is largely maintained by a non-vital stratum corneum

• A sub-granular layer network of tight junctions regulates exchange of macromolecules, ions and water

• A constellation of immune and inflammatory cells, working in conjunction with resident skin cells, constitutes an immunologic barrier

• Perturbations of skin barrier function are common causes of, or aggravators of, skin diseases
Components of the Skin Immune System

- **Epidermis**
 - Keratinocytes
 - Dendritic cells (epidermal Langerhans cells)
 - Melanocytes and nerves (?)
 - Commensal microbes (?)
 - Lymphocytes (?)

- **Dermis**
 - Dermal dendritic cells
 - Lymphocytes (conventional and innate)
 - Mast cells
 - Natural killer (NK) cells
 - Endothelial cells (and vessels)

- **Subcutis (?)**
- **Regional lymph nodes**
- **Everything else (especially blood, bone marrow and spleen)**
Studying Immune Responses In Vivo

• Mice
 • Naturally occurring disease models
 • Transgenic mice
 • K14/IL-1
 • K14/TGFβRII
 • Langerin/DTR
 • Knockout mice
 • TGFβ
 • IL-12
 • IFNRI
 • Conditional (Cre-lox)
 • Knockin mice
 • Reporter gene (eYFP, ...)
 • Constitutive or conditional
 • Xenograft models
 • Psoriasis
 • Intravital microscopy or other real time imaging approaches

• Humans
 • Rare diseases (esp. monoallelic genetic diseases)
 • IPEX (Fox3p)
 • Atypical mycobacteria (IL-12R, NEMO)
 • DC-associated immuno-deficiency (IRF8)
 • Mono Mac (GATA2)
 • Pustular psoriasis (IL-36RA)
 • Biologic response modifiers
 • TNF reagents (TNF or TNFR)
 • Anti-Lymphocyte reagents (LFA-1, CD2, CD20)
 • Anti-T cell subpopulation reagents (CD25, CTLA4)
 • Anti-Cytokine reagents (IL-12/23 p40, IL-17)
 • GWAS
“Recent” Concepts

- Skin compartments are sites of residence of several leukocyte subpopulations (dendritic cells and T cells for example)

- Hair follicles have unanticipated immune regulatory functions and possible relevance to disease pathogenesis

- Commensal microbes regulate skin immune cell number and function
Fig. 1. Local skin infection leads to seeding of the entire skin surface with protective T_{RM}. After a localized skin infection with vaccinia virus in mice, highly protective virus-specific T_{RM} were generated (1) that remained long-term in the skin and provided local protection against reinfection (21).

Highest number of T_{RM} develop at the site of infection

Protective T_{RM} in lower numbers colonize the rest of the skin surface

Rachael A. Clark Sci Transl Med 2015;7:269rv1

Published by AAAS
Fig. 3. T_{RM} are generated via a distinct, tissue-induced differentiation program.

Rachael A. Clark Sci Transl Med 2015;7:269rv1
Tissue-resident T Cells

- Feature of tissues that interface with the environment
- T_{RM}, T_{CM} and T_{MM} generated during first exposures
- Both CD4 and CD8 T cells
- Repertoires are diverse
- Can be differentiated by surface phenotypes and expression profiles that indicate distinct functional characteristics
- T_{RM} with potent effector function and accumulate in highest numbers at sites of initial pathogen exposure but also distribute to other skin sites and different epithelia
- T_{CM} circulate systemically and serve as a precursor reservoir that can be tapped during reinfection/rechallenge
- T_{MM} have intermediate levels of effector function and uncertain physiologic role currently
- Concept provides an intellectual framework for understanding a number of important skin diseases – psoriasis, MF/CTL, fixed drug reactions
Unanticipated Immunological Functions of Hair Follicles

MHC II
Recruitment of DC by Hair Follicle-derived Chemokines

Mechanical Stress

Infundibulum

Isthmus

Bulge

CCL2

CCL8

CCL20

Hair Follicle-derived Cytokines Regulate Resident Memory T Cells

Belkaid and Tamoutounour
Take Home Messages

• The immune system evolved to protect complex organisms from infection

• Immune responses are organismal, but compartmentalized

• Skin has “specialized” immune functions because it is an interface organ

• There is an active dialogue between the environment and the skin immune system that influences immune function

• *In vivo* studies are critical

• We know a lot, but we are still learning

• New information is altering existing paradigms, and impacting on patient care