boards' fodder

Suture and Suture Materials

by Kelly K. Park, MD, MSL

Physical Properti	es					
Configuration	Monofilament versus multifilament (twisted or braided)					
Coating	May improve coefficient of friction or have antimicrobial or antitumor properties					
Capillarity	Ability to absorb and transfer fluid					
Coefficient of Friction	Ease of suture to move through tissue					
Tensile Strength	Weight to break suture ÷ suture cross-sectional area (increased tensile strength: larger suture, syn- thetic > natural; greatest tensile strength: stainless steel)					
Size	Number denoting tensile strength					
Knot Strength	Security of knot (increased knot strength: increased coefficient of friction)					
Memory	Property of suture to revert to previous shape after bending deformation (increased memory →poor handling)					
Elasticity	Property of suture to revert to original size and shape after stretching deformation					
Plasticity	Property of suture to retain new shape after stretching deformation					
Handling	Manageability and ease of working with a particular suture					
Tissue Reactivity	Degree of inflammatory response to suture (increased with larger caliber, multifilament, absorbable, natural sutures)					

Selected Absorbable Suture Characteristics

Suture	Configuration	Composition	Knot Strength	Tissue Reactivity	Absorption Rate	Pros	Cons
Surgical gut, plain	Twisted multifilament	Natural	8	1	70 days		↓ tensile strength
Fast-absorbing gut	Twisted multifilament	Natural	$\overline{\mathbf{S}}$	↑	21-42 days	Usage in graft attachment	Can have true allergy
Chromic surgi- cal gut	Twisted multifilament	Natural		⇔ /↑	90 days	Chromium salt added to maintain strength	↑ COF, can have true allergy
Polyglycolic acid	Braided multifilament	Synthetic	\odot	$\Leftrightarrow/\downarrow$	60-90 days	↑ knot security	↑ suture spitting
Polyglactin 910	Braided multifilament	Synthetic	\odot	$\Leftrightarrow/\downarrow$	56-70 days	↑ handling	↑ COF
Polydioxanone	Monofilament	Synthetic	8	Ţ	90-180 days	↑ tensile strength	 ↓ handling, ↓ knot security
Polytrimethylene carbonate/ Polyglyconate	Monofilament	Synthetic	00	$\downarrow\downarrow$	60-180 days	↑ tensile strength	
Poliglecaprone 25	Monofilament	Synthetic	00	ΥŢ	90-120 days	 ↑ tensile strength, ↓ COF, ↑ elasticity 	

COF = coefficient of friction

 \bigotimes = Poor, \bigoplus = Intermediate, \bigoplus = Good, $\bigoplus \bigoplus$ = Excellent \uparrow = Increased, \Leftrightarrow = Intermediate, \downarrow = Decreased

Note:

Natural suture is degraded by proteolysis with high rates of tissue reaction. Synthetic suture is degraded by hydrolysis with low rates of tissue reaction.

Kelly K. Park, MD, MSL, is a PGY-3 dermatology resident at Loyola

University Medical

Illinois.

Center in Maywood,

boards' fodder

Suture and Suture Materials (cont.)

by Kelly K. Park, MD, MSL

Suture	Configuration	Composition	Knot Strength	Tissue Reactivity	Memory	Pros	Cons
Silk	Braided multifilament	Natural	00	^	Ţ	↑ pliability	↓ tensile strength, ↑ COF
Nylon	Multifilament	Synthetic		Ţ	⇔	 ↑ tensile strength, ↑ elasticity 	↑ memory, ↓ handling
Polyester, uncoated	Braided multifilament	Synthetic	00	⇔	⇔	↑ tensile strength	↑ COF
Polypropylene	Monofilament	Synthetic	8	Ŷ	Ŷ	 ↑↑ tensile strength, ↑ resistance to infection, ↑ plasticity 	↓ elasticity
Nylon	Monofilament	Synthetic	8	Ţ	1	 ↑ tensile strength, ↑ elasticity 	↑ memory, ↓ handling
Polybutester	Monofilament	Synthetic	٢	Ļ	Ţ	 ↑ tensile strength, ↑ elasticity ↓ COF 	

COF = coefficient of friction

 $\textcircled{\otimes} = \mathsf{Poor}, \textcircled{\odot} = \mathsf{Intermediate}, \textcircled{\odot} = \mathsf{Good}, \textcircled{\odot} \textcircled{\odot} = \mathsf{Excellent}$

 $\uparrow = \text{Increased}, \Leftrightarrow = \text{Intermediate}, \downarrow = \text{Decreased}$

Note:

Natural suture is degraded by proteolysis with high rates of tissue reaction. Synthetic suture is degraded by hydrolysis with low rates of tissue reaction.

Suture Needle*PartDescriptionTipMost distal portion of the needlePointArea from the needle tip to the largest diameter portion of the bodyBodyBetween the point and shank/swage; strongest portion of the needleShank/SwageWhere suture attachment occurs; determines suture tract size

*In dermatologic surgery, the 3/8 circle needle is most commonly used.

References

1. Srivastava D, Taylor RS. Suturing Technique and Other Closure Materials. In: Surgery of the Skin: Procedural Dermatology. 3rd ed. Philadelphia, PA: Saunders/Elsevier; 2015: 193-213.

2. Yag-Howard C. Sutures, Needles, and Tissue Adhesives. Dermatologic Surg. 2014;40:S3-S15.

Boards' Fodder

In addition to this issue's Boards' Fodder. don't forget to download the new Board's Fodder online exclusive from www.aad.org/DIR, where a new chart is published each quarter. The latest online Boards' Fodder is Chemical Peels by Roman Bronfenbrener, MD, and Toni Bronfenbrener, RN, BSN. To view, download, or print every Boards' Fodder ever published, both in print and online. check out the complete archives at www.aad.org/ **BFarchives**.